Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.catena.2019.104248 |
The role of grain size and inoculum amount on biocrust formation by Leptolyngbya ohadii | |
Mugnai, Gianmarco1,2; Rossi, Federico1; Chamizo, Sonia1,3; Adessi, Alessandra1; De Philippis, Roberto1 | |
通讯作者 | Rossi, Federico |
来源期刊 | CATENA
![]() |
ISSN | 0341-8162 |
EISSN | 1872-6887 |
出版年 | 2020 |
卷号 | 184 |
英文摘要 | Cyanobacteria are widespread prokaryotic organisms that represent feasible biotechnological tools to set up valid approaches to counteract desertification. Their peculiar physiological traits, and their resilience to abiotic stresses, allow their application on abiotically constrained soils to trigger their stabilization. A successful cyanobacteria inoculation results in the formation of cyanobacterial biocrusts, complex microbial communities characterized by tangled filament meshes imbued in a matrix of self-secreted extracellular polysaccharides (EPS) that keep loose sediments and aggregates firmly in place. However, the capability to form stable cyanobacterial biocrusts is not common to all the species, and a mix of factors can hamper the process, notably inoculum amount, and substrate characteristics. The aim of this work was to assess the influence of inoculum quantity and substrate granulometry on the physical stability of cyanobacterial biocrusts induced by inoculating the strain Leptolyngbya ohadii in a microcosm experiment, under laboratory conditions. After applying three different initial inoculum amounts on two different sand granulometries (medium and coarse sand), we assayed aggregate stability, physical stability and surface hydrophobicity on the resulting biocrusts during a 30-day incubation. Also, the features and the role of the EPS synthesized by L. ohadii were studied following their isolation, characterization, and direct application on the sand. The two EPS fractions produced by the strain, one more soluble and easily released in the surrounding medium (released polysaccharides, RPS) and one solidly attached to the filaments (glycocalyx EPS, G-EPS), were separately tested. Cyanobacterial biocrusts visibly formed in all the microcosms after 15 days. However, we observed a strong effect of sand granulometry in affecting aggregate stability and tensile strength, both of which appeared weaker on coarse sand. A higher amount of initial inoculum was necessary to produce stable biocrusts on coarse sand compared to medium sand. Also, we observed how the inoculation of EPS alone did not sort most of the significant effects that we detected by inoculating the whole culture, pointing at the importance of the action of the cyanobacterial filaments in soil conglomeration. However, a significant increase in physical stability was achieved by inoculating G-EPS on medium sand, suggesting the involvement of this fraction in biocrusts structuration. This work analyzes for the first time the effects of the variable grain size and inoculum amount in the achievement of physically stable biocrusts by cyanobacteria inoculation. The results that we obtained are useful in improving and optimizing the process of biomass preparation and dispersion for future indoor and outdoor studies. |
英文关键词 | Biocrusts Inoculation Aggregate stability Tensile strength RPS G-EPS |
类型 | Article |
语种 | 英语 |
国家 | Italy ; Spain |
收录类别 | SCI-E |
WOS记录号 | WOS:000525323800011 |
WOS关键词 | BIOLOGICAL SOIL CRUSTS ; CYANOBACTERIAL EXOPOLYSACCHARIDES ; EXOCELLULAR POLYSACCHARIDES ; PHOTOTROPHIC BIOFILMS ; AGGREGATE STABILITY ; WATER-REPELLENCY ; INOCULATION ; MOTILITY ; MATRIX ; CARBON |
WOS类目 | Geosciences, Multidisciplinary ; Soil Science ; Water Resources |
WOS研究方向 | Geology ; Agriculture ; Water Resources |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/314218 |
作者单位 | 1.Univ Florence, Dept Agr Food Environm & Forestry Sci & Technol D, Via Maragliano 77, I-50144 Florence, Italy; 2.Univ Milan, Dept Food Environm & Nutr Sci DeFENS, Via Luigi Mangiagalli 25, I-20133 Milan, Italy; 3.Univ Almeria, Agron Dept, La Canada San Urbano S-N, Almeria 04120, Spain |
推荐引用方式 GB/T 7714 | Mugnai, Gianmarco,Rossi, Federico,Chamizo, Sonia,et al. The role of grain size and inoculum amount on biocrust formation by Leptolyngbya ohadii[J],2020,184. |
APA | Mugnai, Gianmarco,Rossi, Federico,Chamizo, Sonia,Adessi, Alessandra,&De Philippis, Roberto.(2020).The role of grain size and inoculum amount on biocrust formation by Leptolyngbya ohadii.CATENA,184. |
MLA | Mugnai, Gianmarco,et al."The role of grain size and inoculum amount on biocrust formation by Leptolyngbya ohadii".CATENA 184(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。