Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.atmosenv.2020.117320 |
Hybridized neural fuzzy ensembles for dust source modeling and prediction | |
Rahmati, Omid1,2; Panahi, Mahdi3,4; Ghiasi, Seid Saeid5; Deo, Ravinesh C.6,7; Tiefenbacher, John P.8; Pradhan, Biswajeet9,10; Jahani, Ali11; Goshtasb, Hamid11; Kornejady, Aiding12; Shahabi, Himan13,14; Shirzadi, Ataollah13; Khosravi, Hassan5; Moghaddam, Davoud Davoudi15; Mohtashamian, Maryamsadat16; Dieu Tien Bui17 | |
通讯作者 | Dieu Tien Bui |
来源期刊 | ATMOSPHERIC ENVIRONMENT
![]() |
ISSN | 1352-2310 |
EISSN | 1873-2844 |
出版年 | 2020 |
卷号 | 224 |
英文摘要 | Dust storms are believed to play an essential role in many climatological, geochemical, and environmental processes. This atmospheric phenomenon can have a significant negative impact on public health and significantly disturb natural ecosystems. Identifying dust-source areas is thus a fundamental task to control the effects of this hazard. This study is the first attempt to identify dust source areas using hybridized machine-learning algorithms. Each hybridized model, designed as an intelligent system, consists of an adaptive neuro-fuzzy inference system (ANFIS), integrated with a combination of metaheuristic optimization algorithms: the bat algorithm (BA), cultural algorithm (CA), and differential evolution (DE). The data acquired from two key sources - the Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue and the Ozone Monitoring Instrument (OMI) - are incorporated into the hybridized model, along with relevant data from field surveys and dust samples. Goodness-of-fit analyses are performed to evaluate the predictive capability of the hybridized models using different statistical criteria, including the true skill statistic (TSS) and the area under the receiver operating characteristic curve (AUC). The results demonstrate that the hybridized ANFIS-DE model (with AUC = 84.1%, TSS = 0.73) outperforms the other comparative hybridized models tailored for dust-storm prediction. The results provide evidence that the hybridized ANFIS-DE model should be explored as a promising, cost-effective method for efficiently identifying the dust-source areas, with benefits for both public health and natural environments where excessive dust presents significant challenges. |
英文关键词 | Environmental modeling Dust Neural fuzzy Ensemble Iran |
类型 | Article |
语种 | 英语 |
国家 | Vietnam ; South Korea ; Iran ; Australia ; USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000525865300032 |
WOS关键词 | DIFFERENTIAL EVOLUTION ; INFERENCE SYSTEM ; DESERT DUST ; SOURCE REGIONS ; ANFIS ; IMPACT ; STORMS ; ANN ; OPTIMIZATION ; ALGORITHM |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/314150 |
作者单位 | 1.Ton Duc Thang Univ, Geog Informat Sci Res Grp, Ho Chi Minh City, Vietnam; 2.Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City, Vietnam; 3.Kangwon Natl Univ, Div Sci Educ, Chuncheon Si 24341, Gangwon Do, South Korea; 4.Korea Inst Geosci & Mineral Resources KIGAM, Geosci Platform Res Div, 124 Gwahak Ro, Daejeon 34132, South Korea; 5.Univ Tehran, Fac Nat Resources, Dept Arid & Mt Reg Reclamat, Karaj, Iran; 6.Univ Southern Queensland, Sch Agr Computat & Environm Sci, Ctr Sustainable Agr Syst, Springfield, Qld 4300, Australia; 7.Univ Southern Queensland, Ctr Appl Climate Sci, Springfield, Qld 4300, Australia; 8.Texas State Univ, Dept Geog, San Marcos, TX 78666 USA; 9.Univ Technol Sydney, Fac Engn & IT, CAMGIS, Sydney, NSW 2007, Australia; 10.Sejong Univ, Dept Energy & Mineral Resources Engn, 209 Neungdong Ro, Seoul 05006, South Korea; 11.Coll Environm, Dept Nat Environm & Biodivers, Karaj, Iran; 12.Gorgan Univ Agr Sci & Nat Resources, Dept Watershed Management, Gorgan, Golestan, Iran; 13.Univ Kurdistan, Fac Nat Resources, Dept Geomorphol, Sanandaj, Iran; 14.Univ Kurdistan, Kurdistan Studies Inst, Dept Zrebar Lake Environm Res, Sanandaj, Iran; 15.Lorestan Univ, Fac Agr & Nat Resources, Dept Watershed Management, Khorramabad, Iran; 16.Univ Qazvin, Dept Comp Engn, Qazvin, Iran; 17.Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam |
推荐引用方式 GB/T 7714 | Rahmati, Omid,Panahi, Mahdi,Ghiasi, Seid Saeid,et al. Hybridized neural fuzzy ensembles for dust source modeling and prediction[J],2020,224. |
APA | Rahmati, Omid.,Panahi, Mahdi.,Ghiasi, Seid Saeid.,Deo, Ravinesh C..,Tiefenbacher, John P..,...&Dieu Tien Bui.(2020).Hybridized neural fuzzy ensembles for dust source modeling and prediction.ATMOSPHERIC ENVIRONMENT,224. |
MLA | Rahmati, Omid,et al."Hybridized neural fuzzy ensembles for dust source modeling and prediction".ATMOSPHERIC ENVIRONMENT 224(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。