Arid
DOI10.1016/j.agwat.2020.106121
Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area
Yamac, Sevim Seda1; Seker, Cevdet2; Negis, Hamza2
通讯作者Yamac, Sevim Seda
来源期刊AGRICULTURAL WATER MANAGEMENT
ISSN0378-3774
EISSN1873-2283
出版年2020
卷号234
英文摘要This study evaluated the performance of deep learning (DL), artificial neural network (ANN) and k-nearest neighbour (kNN) models to estimate field capacity (FC) and permanent wilting point (PWP) using four combinations of soil data. The DL, ANN and kNN models are compared with the previous published pedotransfer functions (PTF). The data consist of 256 calcareous soil samples collected from Konya-Cumra plain, Turkey. The results demonstrated that the DL_a with inputs of soil texture components, bulk density, organic matter and lime contents, particle density and aggregate stability showed the best performances with coefficient of determination (R-2) of 0.829, correlation coefficient (r) of 0.911, mean absolute error (MAE) of 0.027 and relative root mean square error (RRMSE) 9.397 % in FC estimation for calcareous soil samples. For the PWP estimation of calcareous soil samples, the kNN_b with soil texture components, bulk density, organic matter and lime content and particle density indicated the best performance with the value of R-2 to 0.800, of r to 0.894, of MAE to 0.021 and RRMSE to 12.043 %. Lastly, the results showed that the DL, ANN and the kNN models perform better than the previously applied PTF for calcareous soils. Therefore, the DL model could be recommended for the estimation of FC when full soil data are available and the kNN model could be recommended for estimation of PWP with all combinations of soil data.
英文关键词Field capacity Permanent wilting point Deep learning Artificial neural network k-nearest neighbour
类型Article
语种英语
国家Turkey
收录类别SCI-E
WOS记录号WOS:000525293700019
WOS关键词ARTIFICIAL NEURAL-NETWORK ; REFERENCE EVAPOTRANSPIRATION ESTIMATION ; SUPPORT VECTOR MACHINES ; PEDOTRANSFER FUNCTIONS ; WATER-RETENTION ; FIELD-CAPACITY ; SIZE DISTRIBUTION ; ORGANIC-MATTER ; AGGREGATE-SIZE ; PARTICLE-SIZE
WOS类目Agronomy ; Water Resources
WOS研究方向Agriculture ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/313969
作者单位1.Konya Food & Agr Univ, Fac Agr & Nat Sci, Dept Plant Prod & Technol, Konya, Turkey;
2.Selcuk Univ, Fac Agr, Dept Soil Sci & Plant Nutr, Konya, Turkey
推荐引用方式
GB/T 7714
Yamac, Sevim Seda,Seker, Cevdet,Negis, Hamza. Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area[J],2020,234.
APA Yamac, Sevim Seda,Seker, Cevdet,&Negis, Hamza.(2020).Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area.AGRICULTURAL WATER MANAGEMENT,234.
MLA Yamac, Sevim Seda,et al."Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area".AGRICULTURAL WATER MANAGEMENT 234(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yamac, Sevim Seda]的文章
[Seker, Cevdet]的文章
[Negis, Hamza]的文章
百度学术
百度学术中相似的文章
[Yamac, Sevim Seda]的文章
[Seker, Cevdet]的文章
[Negis, Hamza]的文章
必应学术
必应学术中相似的文章
[Yamac, Sevim Seda]的文章
[Seker, Cevdet]的文章
[Negis, Hamza]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。