Arid
DOI10.1175/JHM-D-19-0087.1
Application of a Dynamic Clustered Bayesian Model Averaging (DCBA) Algorithm for Merging Multisatellite Precipitation Products over Pakistan
Rahman, Khalil Ur1; Shang, Songhao1; Shahid, Muhammad1; Wen, Yeqiang1; Khan, Zeeshan2
通讯作者Shang, Songhao
来源期刊JOURNAL OF HYDROMETEOROLOGY
ISSN1525-755X
EISSN1525-7541
出版年2020
卷号21期号:1页码:17-37
英文摘要Merged multisatellite precipitation datasets (MMPDs) combine the advantages of individual satellite precipitation products (SPPs), have a tendency to reduce uncertainties, and provide higher potentials to hydrological applications. This study applied a dynamic clustered Bayesian model averaging (DCBA) algorithm to merge four SPPs across Pakistan. The DCBA algorithm produced dynamic weights to different SPPs varying both spatially and temporally to accommodate the spatiotemporal differences of SPP performances. The MMPD is developed at daily temporal scale from 2000 to 2015 with spatial resolution of 0.25 degrees using extensively evaluated SPPs and a global atmospheric reanalysis-precipitation dataset: Tropical Rainfall Measurement Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42V7, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Climate Prediction Center morphing technique (CMORPH), and ERA-Interim. The DCBA algorithm is evaluated across four distinct climate regions of Pakistan over 102 ground precipitation gauges (GPGs). DCBA forecasting outperformed all four SPPs with average Theil's U of 0.49, 0.38, 0.37, and 0.36 in glacial, humid, arid, and hyperarid regions, respectively. The average mean bias error (MBE), mean error (MAE), root-mean-square error (RMSE), correlation coefficient (CC), and standard deviation (SD) of DCBA over all of Pakistan are 0.54, 1.40, 4.94, 0.77, and 5.17 mm day(-1), respectively. Seasonal evaluation revealed a dependency of DCBA performance on precipitation magnitude/intensity and elevation. Relatively poor DCBA performance is observed in premonsoon/monsoon seasons and at high/mild elevated regions. Average improvements of DCBA in comparison with TMPA are 59.56% (MBE), 49.37% (MAE), 45.89% (RMSE), 19.48% (CC), 46.7% (SD), and 18.66% (Theil's U). Furthermore, DCBA efficiently captured extreme precipitation trends (premonsoon/monsoon seasons).
英文关键词Precipitation Remote sensing Bayesian methods Ensembles
类型Article
语种英语
国家Peoples R China
开放获取类型Bronze
收录类别SCI-E
WOS记录号WOS:000506354600001
WOS关键词SATELLITE-BASED PRECIPITATION ; SPATIAL PREDICTION ; ANALYSIS TMPA ; PERFORMANCE ; TOPOGRAPHY ; ACCURACY ; TERRAIN ; REGION ; SCHEME
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
EI主题词2020-01-01
来源机构清华大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/312006
作者单位1.Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing, Peoples R China;
2.Tsinghua Univ, Sch Econ & Management, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Rahman, Khalil Ur,Shang, Songhao,Shahid, Muhammad,et al. Application of a Dynamic Clustered Bayesian Model Averaging (DCBA) Algorithm for Merging Multisatellite Precipitation Products over Pakistan[J]. 清华大学,2020,21(1):17-37.
APA Rahman, Khalil Ur,Shang, Songhao,Shahid, Muhammad,Wen, Yeqiang,&Khan, Zeeshan.(2020).Application of a Dynamic Clustered Bayesian Model Averaging (DCBA) Algorithm for Merging Multisatellite Precipitation Products over Pakistan.JOURNAL OF HYDROMETEOROLOGY,21(1),17-37.
MLA Rahman, Khalil Ur,et al."Application of a Dynamic Clustered Bayesian Model Averaging (DCBA) Algorithm for Merging Multisatellite Precipitation Products over Pakistan".JOURNAL OF HYDROMETEOROLOGY 21.1(2020):17-37.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rahman, Khalil Ur]的文章
[Shang, Songhao]的文章
[Shahid, Muhammad]的文章
百度学术
百度学术中相似的文章
[Rahman, Khalil Ur]的文章
[Shang, Songhao]的文章
[Shahid, Muhammad]的文章
必应学术
必应学术中相似的文章
[Rahman, Khalil Ur]的文章
[Shang, Songhao]的文章
[Shahid, Muhammad]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。