Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.5194/amt-12-6557-2019 |
Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign | |
Gupta, Pawan1,2; Levy, Robert C.3; Mattoo, Shana3,4; Remer, Lorraine A.5; Holz, Robert E.6; Heidinger, Andrew K.7 | |
通讯作者 | Gupta, Pawan |
来源期刊 | ATMOSPHERIC MEASUREMENT TECHNIQUES
![]() |
ISSN | 1867-1381 |
EISSN | 1867-8548 |
出版年 | 2019 |
卷号 | 12期号:12页码:6557-6577 |
英文摘要 | For nearly 2 decades we have been quantitatively observing the Earth's aerosol system from space at one or two times of the day by applying the Dark Target family of algorithms to polar-orbiting satellite sensors, particularly MODIS and VIIRS. With the launch of the Advanced Himawari Imager (AHI) and the Advanced Baseline Imagers (ABIs) into geosynchronous orbits, we have the new ability to expand temporal coverage of the traditional aerosol optical depth (AOD) to resolve the diurnal signature of aerosol loading during daylight hours. The Korean-United States Air Quality (KORUS-AQ) campaign taking place in and around the Korean peninsula during May-June 2016 initiated a special processing of full-disk AHI observations that allowed us to make a preliminary adoption of Dark Target aerosol algorithms to the wavelengths and resolutions of AHI. Here, we describe the adaptation and show retrieval results from AHI for this 2-month period. The AHI-retrieved AOD is collocated in time and space with existing AErosol RObotic NETwork stations across Asia and with collocated Terra and Aqua MODIS retrievals. The new AHI AOD product matches AERONET, and the standard MODIS product does as well, and the agreement between AHI and MODIS retrieved AOD is excellent, as can be expected by maintaining consistency in algorithm architecture and most algorithm assumptions. Furthermore, we show that the new product approximates the AERONET-observed diurnal signature. Examining the diurnal patterns of the new AHI AOD product we find specific areas over land where the diurnal signal is spatially cohesive. For example, in Bangladesh the AOD increases by 0.50 from morning to evening, and in northeast China the AOD decreases by 0.25. However, over open ocean the observed diurnal cycle is driven by two artifacts, one associated with solar zenith angles greater than 70 degrees that may be caused by a radiative transfer model that does not properly represent the spherical Earth and the other artifact associated with the fringes of the 40 degrees glint angle mask. This opportunity during KORUS-AQ provides encouragement to move towards an operational Dark Target algorithm for AHI. Future work will need to re-examine masking including snow mask, re-evaluate assumed aerosol models for geosynchronous geometry, address the artifacts over the ocean, and investigate size parameter retrieval from the over-ocean algorithm. |
类型 | Article |
语种 | 英语 |
国家 | USA |
开放获取类型 | gold, Green Submitted |
收录类别 | SCI-E |
WOS记录号 | WOS:000502287900001 |
WOS关键词 | OPTICAL DEPTH ; RETRIEVING AEROSOL ; DATA ASSIMILATION ; DESERT DUST ; MODIS ; PRODUCTS ; LAND ; VALIDATION ; IMPROVEMENTS ; URBAN |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
EI主题词 | 2019-12-11 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/311672 |
作者单位 | 1.USRA, Sci & Technol Inst, STI, Huntsville, AL 35806 USA; 2.NASA, Marshall Space Flight Ctr, Huntsville, AL 35758 USA; 3.NASA, Goddard Space Flight Ctr, Code 916, Greenbelt, MD 20771 USA; 4.Sci Syst & Applicat Inc, Lanham, MD 20709 USA; 5.Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA; 6.Univ Wisconsin, SSEC, Madison, WI 53707 USA; 7.NOAA, Adv Satellite Prod Branch, Madison, WI 53707 USA |
推荐引用方式 GB/T 7714 | Gupta, Pawan,Levy, Robert C.,Mattoo, Shana,et al. Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign[J],2019,12(12):6557-6577. |
APA | Gupta, Pawan,Levy, Robert C.,Mattoo, Shana,Remer, Lorraine A.,Holz, Robert E.,&Heidinger, Andrew K..(2019).Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign.ATMOSPHERIC MEASUREMENT TECHNIQUES,12(12),6557-6577. |
MLA | Gupta, Pawan,et al."Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign".ATMOSPHERIC MEASUREMENT TECHNIQUES 12.12(2019):6557-6577. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。