Arid
DOI10.3390/rs11242931
Extracting Taklimakan Dust Parameters from AIRS with Artificial Neural Network Method
Yao, Zhigang1,2; Li, Jun3; Zhao, Zengliang1; Zhu, Lin4; Qi, Jin4; Che, Huizheng5
通讯作者Qi, Jin
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2019
卷号11期号:24
英文摘要Two back-propagation artificial neural network retrieval models have been developed for obtaining the dust aerosol optical depth (AOD) and dust-top height (DTH), respectively, from Atmospheric InfraRed Sounder (AIRS) brightness temperature (BT) measurements over Taklimakan Desert area. China Aerosol Remote Sensing Network (CARSNET) measurements at Tazhong station were used for dust AOD validation. Results show that the correlation coefficient of dust AODs between AIRS and CARSNET reaches 0.88 with a deviation of -0.21, which is the same correlation coefficient as the AIRS dust AOD and the Moderate-Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) product. In the AIRS DTH retrieval model, there is an option to include the collocated MODIS deep blue (DB) AOD as additional input for daytime retrieval; the independent dust heights from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used for AIRS DTH validation, and results show that the DTHs derived from the combined AIRS BT measurements and MODIS DB AOD product have better accuracy than those from AIRS BT measurements alone. The correlation coefficient of DTHs between AIRS and independent CALIOP dust heights is 0.79 with a standard deviation of 0.41 km when MODIS DB AOD product is included in the retrieval model. A series of case studies from different seasons were examined to demonstrate the feasibility of retrieving dust parameters from AIRS and potential applications. The method and approaches can be applied to process measurements from advanced infrared (IR) sounder and high-resolution imager onboard the same platform.
英文关键词dust aerosol optical depth dust top height retrieval AIRS MODIS
类型Article
语种英语
国家Peoples R China ; USA
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000507333400047
WOS关键词INFRARED OPTICAL DEPTH ; ASIAN DUST ; AEROSOL PROPERTIES ; SYNERGISTIC USE ; MINERAL DUST ; DESERT DUST ; MODIS ; RETRIEVAL ; CHINA ; ALTITUDE
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
EI主题词2019-12-02
来源机构中国科学院大气物理研究所
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/311491
作者单位1.Beijing Inst Appl Meteorol, Beijing 100029, Peoples R China;
2.Chinese Acad Sci, Inst Atmospher Phys, LAGEO, Beijing 100029, Peoples R China;
3.Univ Wisconsin, CIMSS, Madison, WI 53706 USA;
4.Natl Satellite Meteorol Ctr, Beijing 100081, Peoples R China;
5.Chinese Acad Meteorol Sci, Key Lab Atmospher Chem LAC, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Yao, Zhigang,Li, Jun,Zhao, Zengliang,et al. Extracting Taklimakan Dust Parameters from AIRS with Artificial Neural Network Method[J]. 中国科学院大气物理研究所,2019,11(24).
APA Yao, Zhigang,Li, Jun,Zhao, Zengliang,Zhu, Lin,Qi, Jin,&Che, Huizheng.(2019).Extracting Taklimakan Dust Parameters from AIRS with Artificial Neural Network Method.REMOTE SENSING,11(24).
MLA Yao, Zhigang,et al."Extracting Taklimakan Dust Parameters from AIRS with Artificial Neural Network Method".REMOTE SENSING 11.24(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yao, Zhigang]的文章
[Li, Jun]的文章
[Zhao, Zengliang]的文章
百度学术
百度学术中相似的文章
[Yao, Zhigang]的文章
[Li, Jun]的文章
[Zhao, Zengliang]的文章
必应学术
必应学术中相似的文章
[Yao, Zhigang]的文章
[Li, Jun]的文章
[Zhao, Zengliang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。