Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1038/s41592-019-0616-3 |
Learning representations of microbe-metabolite interactions | |
Morton, James T.1,2; Aksenov, Alexander A.3,4; Nothias, Louis Felix3,4; Foulds, James R.5; Quinn, Robert A.6; Badri, Michelle H.7; Swenson, Tami L.8; Van Goethem, Marc W.8; Northen, Trent R.8,9; Vazquez-Baeza, Yoshiki10,11; Wang, Mingxun3,4; Bokulich, Nicholas A.12,13; Watters, Aaron14; Song, Se Jin1,11; Bonneau, Richard7,14,15,16; Dorrestein, Pieter C.3,4; Knight, Rob1,2,11,17 | |
通讯作者 | Knight, Rob |
来源期刊 | NATURE METHODS
![]() |
ISSN | 1548-7091 |
EISSN | 1548-7105 |
出版年 | 2019 |
卷号 | 16期号:12页码:1306-+ |
英文摘要 | Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks (https://github.com/biocore/mmvec) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe-metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease. |
类型 | Article |
语种 | 英语 |
国家 | USA |
开放获取类型 | Green Accepted, Green Submitted |
收录类别 | SCI-E |
WOS记录号 | WOS:000499653100032 |
WOS关键词 | PROPIONIBACTERIUM-FREUDENREICHII ; MULTI-OMICS ; INFLAMMATION ; STRATEGIES ; COLITIS |
WOS类目 | Biochemical Research Methods |
WOS研究方向 | Biochemistry & Molecular Biology |
EI主题词 | 2019-12-01 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/311145 |
作者单位 | 1.Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA; 2.Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA; 3.Univ Calif San Diego, Collaborat Mass Spectrometry Innovaft Ctr, La Jolla, CA 92093 USA; 4.Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA; 5.Univ Maryland Baltimore Cty, Dept Informat Syst, Baltimore, MD 21228 USA; 6.Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA; 7.NYU, Dept Biol, New York, NY 10003 USA; 8.Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA USA; 9.DOE Joint Genome Inst, Walnut Creek, CA USA; 10.Univ Calif San Diego, Jacobs Sch Engn, La Jolla, CA 92093 USA; 11.Univ Calif San Diego, Ctr Microbiome Innovat, La Jolla, CA 92093 USA; 12.No Arizona Univ, Pathogen & Microbiome Inst, Flagstaff, AZ 86011 USA; 13.No Arizona Univ, Dept Biol Sci, Box 5640, Flagstaff, AZ 86011 USA; 14.Simons Fdn, Flatiron Inst, New York, NY USA; 15.Courant Inst, Comp Sci Dept, New York, NY USA; 16.NYU, Ctr Data Sci, New York, NY USA; 17.Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA |
推荐引用方式 GB/T 7714 | Morton, James T.,Aksenov, Alexander A.,Nothias, Louis Felix,et al. Learning representations of microbe-metabolite interactions[J],2019,16(12):1306-+. |
APA | Morton, James T..,Aksenov, Alexander A..,Nothias, Louis Felix.,Foulds, James R..,Quinn, Robert A..,...&Knight, Rob.(2019).Learning representations of microbe-metabolite interactions.NATURE METHODS,16(12),1306-+. |
MLA | Morton, James T.,et al."Learning representations of microbe-metabolite interactions".NATURE METHODS 16.12(2019):1306-+. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。