Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.agrformet.2019.107660 |
Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China | |
Xu, Hao-jie1,2,3,4; Wang, Xin-ping5![]() | |
通讯作者 | Xu, Hao-jie |
来源期刊 | AGRICULTURAL AND FOREST METEOROLOGY
![]() |
ISSN | 0168-1923 |
EISSN | 1873-2240 |
出版年 | 2019 |
卷号 | 278 |
英文摘要 | Future climate change scenarios predict that warming may increase drought stress over northern China, causing ecological deterioration and food insecurity. Water use efficiency (WUE) is an important indicator to understand the response of ecosystem productivity to water availability. At present we lack a clear picture of how ecosystem WUE responds to drought magnitude across a broad range of vegetation types and environments. Here, we applied Moderate Resolution Imaging Spectrometer (MODIS) satellite images and meteorological data to obtain a regional estimation of gross primary production (GPP) and evapotranspiration (ET) during the period of 2000-2014. We then investigated the relationships between WUE (GPP/ET) and drought magnitude (based on the Standardized Precipitation Evapotranspiration Index, SPEI) for different climate zones and biomes. The mean annual WUE decreased with increasing Aridity Index (AI) in arid regions. However, the relationships between WUE and AI followed a logarithmic function across semi-arid and humid regions. In hype-arid, sub-humid and humid regions, a drying trend resulted in increased WUE. Contrasting responses of WUE to drought were found in arid and semi-arid regions. The negative effect of drought that caused decreased WUE was most significant in the transition zone between arid and semi-arid lands. Besides, the relationships between relative changes in WUE and drought magnitude followed a logarithmic function of SPEI. Severe and extreme drought resulted in WUE reductions regardless of different hydroclimatic conditions and biomes. The ecosystem resistant to drought can be evaluated by the magnitude of WUE reductions during drought, together with the WUE-SPEI correlations. Forests were most resistant to drought, followed by croplands, grasslands, and deserts. Differences in the ecosystem resistance to water stress were attributed to diversities in drought survival traits and strategies. Given that hydroclimatic conditions break down ecosystem resistance under severe and extreme drought, we highlight an urgent need to formulate adaptation strategies aimed at reducing drought risk in the eastern and central portions of northern China. |
英文关键词 | Meteorological drought Water use efficiency Water availability Drought magnitude Ecosystem resistance |
类型 | Article |
语种 | 英语 |
国家 | Peoples R China |
收录类别 | SCI-E |
WOS记录号 | WOS:000500196400017 |
WOS关键词 | ALTERED PRECIPITATION REGIMES ; CLIMATE EXTREMES ; TERRESTRIAL ECOSYSTEMS ; SEMIARID ECOSYSTEMS ; VEGETATION GROWTH ; EDDY COVARIANCE ; PLANT-RESPONSES ; SUMMER DROUGHT ; ARID REGION ; VARIABILITY |
WOS类目 | Agronomy ; Forestry ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Agriculture ; Forestry ; Meteorology & Atmospheric Sciences |
EI主题词 | 2019-11-15 |
来源机构 | 兰州大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/310874 |
作者单位 | 1.Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Gansu, Peoples R China; 2.Lanzhou Univ, Key Lab Grassland Livestock Ind Innovat, Minist Agr & Rural Affairs, Lanzhou 730020, Gansu, Peoples R China; 3.Lanzhou Univ, Engn Res Ctr Grassland Ind, Minist Educ, Lanzhou 730020, Gansu, Peoples R China; 4.Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Gansu, Peoples R China; 5.Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Shapotou Desert Res & Expt Stn, Lanzhou 730000, Gansu, Peoples R China; 6.Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China |
推荐引用方式 GB/T 7714 | Xu, Hao-jie,Wang, Xin-ping,Zhao, Chuan-yan,et al. Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China[J]. 兰州大学,2019,278. |
APA | Xu, Hao-jie,Wang, Xin-ping,Zhao, Chuan-yan,&Zhang, Xiao-xiao.(2019).Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China.AGRICULTURAL AND FOREST METEOROLOGY,278. |
MLA | Xu, Hao-jie,et al."Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China".AGRICULTURAL AND FOREST METEOROLOGY 278(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。