Arid
DOI10.1016/j.jag.2019.06.001
Spatial pattern analysis of Haloxylon ammodendron using UAV imagery - A case study in the Gurbantunggut Desert
Xu, Jia1; Gu, Haibin1,2; Meng, Qingmin2; Cheng, Junhui1; Liu, Yunhua1; Jiang, Ping'; an1; Sheng, Jiandong1; Deng, Jiang1; Bai, Xue1
通讯作者Sheng, Jiandong
来源期刊INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION
ISSN1569-8432
EISSN1872-826X
出版年2019
卷号83
英文摘要Spatial patterns are not only the foundation for the understanding of plant interactions, but also reflect the spatial processes among plant populations. The primary requirement of spatial pattern analysis is the collections of location information of individual plants. In this study, we used low-altitude Unmanned Aerial Vehicle (UAV) remote sensing technology to obtain regional high-precision remote sensing images for Haloxylon ammodendron (H. ammodendron) forest in the southwestern Gurbantunggut Desert, and extracted spatial position information to analyze the spatial patterns using Ripley's L(r) function. Applying and comparing seven spatial position extraction methods, this study showed that the index RGRI (Red-Green Ratio Index) made 83.46% accuracy in the spatial position extraction, and an accuracy of 79.48% was obtained using NGBDI (Normalized Green-Blue Difference Index), while other five location information extraction methods resulted relatively lower accuracy. Results from spatial pattern analysis indicated that the extraction by UAV remote sensing were consistent with those obtained by field measurements. The H. ammodendron population showed a random distribution within the scale of 0-15 m, which suggested that the dependence of mutual asylum between individuals was low and not important. This distribution may be caused by the intense competition of individual vegetation for soil moisture, nutrients and other resources in desert areas. This study with low-altitude UAV imagery index analysis provided an efficient approach to rapid monitoring of plant population distribution characteristics in desert areas.
英文关键词Haloxylon ammo Dendron UAV Vegetation index Position analysis Spatial point pattern analysis
类型Article
语种英语
国家Peoples R China ; USA
收录类别SCI-E
WOS记录号WOS:000487574200001
WOS关键词VEGETATION INDEXES ; SURFACE MODELS ; LIDAR DATA ; DELINEATION ; TREES ; COVER ; SEGMENTATION ; EXTRACTION ; HEIGHT ; EDGE
WOS类目Remote Sensing
WOS研究方向Remote Sensing
EI主题词2019-11-01
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/310646
作者单位1.Xinjiang Agr Univ, Coll Grassland & Environm Sci, Xinjiang Key Lab Son & Plant Ecol Proc, Urumqi 830052, Peoples R China;
2.Mississippi State Univ, Dept Geosci, Mississippi State, MS 39762 USA
推荐引用方式
GB/T 7714
Xu, Jia,Gu, Haibin,Meng, Qingmin,et al. Spatial pattern analysis of Haloxylon ammodendron using UAV imagery - A case study in the Gurbantunggut Desert[J],2019,83.
APA Xu, Jia.,Gu, Haibin.,Meng, Qingmin.,Cheng, Junhui.,Liu, Yunhua.,...&Bai, Xue.(2019).Spatial pattern analysis of Haloxylon ammodendron using UAV imagery - A case study in the Gurbantunggut Desert.INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,83.
MLA Xu, Jia,et al."Spatial pattern analysis of Haloxylon ammodendron using UAV imagery - A case study in the Gurbantunggut Desert".INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 83(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Jia]的文章
[Gu, Haibin]的文章
[Meng, Qingmin]的文章
百度学术
百度学术中相似的文章
[Xu, Jia]的文章
[Gu, Haibin]的文章
[Meng, Qingmin]的文章
必应学术
必应学术中相似的文章
[Xu, Jia]的文章
[Gu, Haibin]的文章
[Meng, Qingmin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。