Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/su11195406 |
Coastal Runoff in the United Arab Emirates-The Hazard and Opportunity | |
Al Abdouli, Khameis1; Hussein, Khalid1; Ghebreyesus, Dawit2; Sharif, Hatim O.2 | |
通讯作者 | Hussein, Khalid |
来源期刊 | SUSTAINABILITY
![]() |
EISSN | 2071-1050 |
出版年 | 2019 |
卷号 | 11期号:19 |
英文摘要 | Properly quantifying the potential exposure of hyper-arid regions to climate extremes is fundamental to developing frameworks that can be used to manage these extremes. In the United Arab Emirates (UAE), rapid growth may exacerbate the impacts of climate extremes through urbanization (increased runoff), population and industrial development (more water demand). Water resources management approaches such as Managed Aquifer Recharge (MAR) application may help mitigate both extremes by storing more water from wet periods for use during droughts. In this study, we quantified the volumes of runoff from coastal watersheds discharging to the Gulf of Oman and the Arabian Gulf that could potentially be captured to replenish depleted aquifers along the coast and help reduce the adverse impacts of urban flooding. To this aim, we first downloaded and processed the Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) rainfall data for a recent wide-spread storm event. The rainfall product was then used as input to hydrologic models of coastal watersheds for estimating the resulting runoff. A multi-criteria decision analysis technique was used to identify areas most prone to runoff accumulation. Lastly, we quantified the volumes of runoff that could potentially be captured from frequency storms of different return periods and how rapid urbanization in the region may increase these runoff volumes creating more opportunities for the replenishment of depleted aquifers. Our results indicate that the average runoff from watersheds discharging to the ocean ranges between 0.11 km(3) and 0.48 km(3) for the 5-year and 100-year storms, respectively. We also found that these amounts will substantially increase due to rapid urbanization in the coastal regions of the UAE. In addition to water supply augmentation during droughts, potential benefits of application of MAR techniques in the UAE coastal regions may include flood control, mitigation against sea-level rise through subsidence control, reduction of aquifer salinity, rehabilitation of ecosystems, cleansing polluted runoff and preventing excessive runoff into the Gulf that can contribute to red tide events. |
英文关键词 | flood hazard HEC-HMS IMERG AHP |
类型 | Article |
语种 | 英语 |
国家 | U Arab Emirates ; USA |
开放获取类型 | gold |
收录类别 | SCI-E ; SSCI |
WOS记录号 | WOS:000493525500265 |
WOS关键词 | RAINFALL ; FLOOD ; VARIABILITY ; SIMULATION ; HYDROLOGY ; DRAINAGE ; SYSTEMS ; CLIMATE ; MODEL |
WOS类目 | Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies |
WOS研究方向 | Science & Technology - Other Topics ; Environmental Sciences & Ecology |
EI主题词 | 2019-10-01 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/310179 |
作者单位 | 1.Univ United Arab Emirates, Dept Geog & Urban Planning, Coll Humanities & Social Sci, Al Ain 15551, U Arab Emirates; 2.Univ Texas San Antonio, Dept Civil & Environm Engn, San Antonio, TX 78249 USA |
推荐引用方式 GB/T 7714 | Al Abdouli, Khameis,Hussein, Khalid,Ghebreyesus, Dawit,et al. Coastal Runoff in the United Arab Emirates-The Hazard and Opportunity[J],2019,11(19). |
APA | Al Abdouli, Khameis,Hussein, Khalid,Ghebreyesus, Dawit,&Sharif, Hatim O..(2019).Coastal Runoff in the United Arab Emirates-The Hazard and Opportunity.SUSTAINABILITY,11(19). |
MLA | Al Abdouli, Khameis,et al."Coastal Runoff in the United Arab Emirates-The Hazard and Opportunity".SUSTAINABILITY 11.19(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。