Arid
DOI10.3390/rs11192308
Identifying Vegetation in Arid Regions Using Object-Based Image Analysis with RGB-Only Aerial Imagery
Silver, Micha; Tiwari, Arti; Karnieli, Arnon
通讯作者Silver, Micha
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2019
卷号11期号:19
英文摘要Vegetation state is usually assessed by calculating vegetation indices (VIs) derived from remote sensing systems where the near infrared (NIR) band is used to enhance the vegetation signal. However VIs are pixel-based and require both visible and NIR bands. Yet, most archived photographs were obtained with cameras that record only the three visible bands. Attempts to construct VIs with the visible bands alone have shown only limited success, especially in drylands. The current study identifies vegetation patches in the hyperarid Israeli desert using only the visible bands from aerial photographs by adapting an alternative geospatial object-based image analysis (GEOBIA) routine, together with recent improvements in preprocessing. The preprocessing step selects a balanced threshold value for image segmentation using unsupervised parameter optimization. Then the images undergo two processes: segmentation and classification. After tallying modeled vegetation patches that overlap true tree locations, both true positive and false positive rates are obtained from the classification and receiver operating characteristic (ROC) curves are plotted. The results show successful identification of vegetation patches in multiple zones from each study area, with area under the ROC curve values between 0.72 and 0.83.
英文关键词segmentation classification vegetation arid regions gray-level co-occurrence matrix texture object-based image analysis threshold optimization
类型Article
语种英语
国家Israel
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000496827100122
WOS关键词RANDOM FOREST ; NEGEV DESERT ; CLASSIFICATION ; INDEXES ; PRODUCTIVITY ; ALGORITHMS ; FEATURES
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
EI主题词2019-10-01
来源机构Ben-Gurion University of the Negev
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/310168
作者单位Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Remote Sensing Lab, IL-84105 Beer Sheva, Israel
推荐引用方式
GB/T 7714
Silver, Micha,Tiwari, Arti,Karnieli, Arnon. Identifying Vegetation in Arid Regions Using Object-Based Image Analysis with RGB-Only Aerial Imagery[J]. Ben-Gurion University of the Negev,2019,11(19).
APA Silver, Micha,Tiwari, Arti,&Karnieli, Arnon.(2019).Identifying Vegetation in Arid Regions Using Object-Based Image Analysis with RGB-Only Aerial Imagery.REMOTE SENSING,11(19).
MLA Silver, Micha,et al."Identifying Vegetation in Arid Regions Using Object-Based Image Analysis with RGB-Only Aerial Imagery".REMOTE SENSING 11.19(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Silver, Micha]的文章
[Tiwari, Arti]的文章
[Karnieli, Arnon]的文章
百度学术
百度学术中相似的文章
[Silver, Micha]的文章
[Tiwari, Arti]的文章
[Karnieli, Arnon]的文章
必应学术
必应学术中相似的文章
[Silver, Micha]的文章
[Tiwari, Arti]的文章
[Karnieli, Arnon]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。