Arid
RESEARCH AND APPLICATION OF SPARSE REPRESENTATION CLASSIFICATION OF REMOTE SENSING IMAGERY BASED ON MULTI-FEATURE MODELING
Liu, Yaoyao1; Zhang, Chunmei1; Yang, Kang1; Wei, Jianguo2
通讯作者Liu, Yaoyao
会议名称9th Workshop on Hyperspectral Image and Signal Processing - Evolution in Remote Sensing (WHISPERS)
会议日期SEP 23-26, 2018
会议地点Amsterdam, NETHERLANDS
英文摘要

Whether the selection of remote sensing features can he performed effectively will directly affect the quality of classification results. This paper proposes a multi-featured modeling strategy for the desert/grassland biome transition zone to improve the classification accuracy, taking Luoshan area of Ningxia province in China as the studying case and Landsat 8 OLI images of three periods as data source. The sparse representation based on dictionary learning is used as a classifier in order to select the combination of optimal features according to the multi-featured modeling strategy. It shows that the combination of spectrum, vegetation, terrain, architecture and water information can effectively improve the classification accuracy and reduce the classification uncertainty in the desert/grassland biome transition zone, and the best identified feature combinations includes b1 similar to b7, NDVI, DEM, NDBI, VAR(b5), MNDWI. Then, the statistical analysis of land cover changes in the study area from 2013 to 2015 was conducted.


英文关键词Multi-featured modeling Remote sensing imagery Sparse representation Luoshan area
来源出版物2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS)
ISSN2158-6268
出版年2018
EISBN978-1-7281-1581-8
出版者IEEE
类型Proceedings Paper
语种英语
国家Peoples R China
收录类别CPCI-S
WOS记录号WOS:000482659100026
WOS类目Engineering, Electrical & Electronic ; Remote Sensing ; Telecommunications
WOS研究方向Engineering ; Remote Sensing ; Telecommunications
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/307759
作者单位1.North Minzu Univ, Coll Comp Sci & Engn, Yinchuan, Peoples R China;
2.Ningxia Meteorol Informat Ctr, Yinchuan, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yaoyao,Zhang, Chunmei,Yang, Kang,et al. RESEARCH AND APPLICATION OF SPARSE REPRESENTATION CLASSIFICATION OF REMOTE SENSING IMAGERY BASED ON MULTI-FEATURE MODELING[C]:IEEE,2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yaoyao]的文章
[Zhang, Chunmei]的文章
[Yang, Kang]的文章
百度学术
百度学术中相似的文章
[Liu, Yaoyao]的文章
[Zhang, Chunmei]的文章
[Yang, Kang]的文章
必应学术
必应学术中相似的文章
[Liu, Yaoyao]的文章
[Zhang, Chunmei]的文章
[Yang, Kang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。