Arid
Yield estimation for spring wheat based on hyperspectral data in semi-arid region
Wang, Xiaoping1; Guo, Ni1; Li, Qiaozhen2
通讯作者Wang, Xiaoping
会议名称7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)
会议日期AUG 06-09, 2018
会议地点Hangzhou, PEOPLES R CHINA
英文摘要

Precise monitoring of the yield of crops is critical for growth diagnosis and precision management. Many spectral indices have been developed for yield estimation. The objective of this study was to determine the most suitable model for the rational estimation of spring wheat yield using canopy hyperspectral reflectance data of spring wheat. Canopy hyperspectral datasets were obtained during the whole growth stage from the seeding to mature stage in semi-arid rained region of Loess Plateau in Northwest China. On the basis of the correlation analysis of the hyperspectral data and the yield data, the study compared potentials and limitations of hyperspectral indices from the canopy level, and analyzed the relationship between hyperspectral indices and yield in different grown stage. The spectral indices REP in booting stage and heading stage are sensitive to the yield. We proposed a compound regression equation from the spectral index of booting and heading stage, the R-2 is 0.875, the combined multiphase phase spectral index is better for yield estimation. The results from field experiment are limited to large-scale experiments and would provide a good basis for remote sensing of yield estimation in a wide range of vegetation.


英文关键词yield hyperspectral reflectance spring wheat semi-arid region
来源出版物2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS)
ISSN2334-3168
出版年2018
页码387-390
EISBN*****************
出版者IEEE
类型Proceedings Paper
语种英语
国家Peoples R China
收录类别CPCI-S
WOS记录号WOS:000468823900081
WOS关键词CROP YIELD ; MODEL ; CORN ; NDVI
WOS类目Agronomy ; Geography, Physical ; Remote Sensing
WOS研究方向Agriculture ; Physical Geography ; Remote Sensing
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/307684
作者单位1.CMA, Inst Arid Meteorol Lanzhou, Key Lab Arid Climate Change & Reducing Disaster G, Key Lab Arid Climate Change & Reducing Disaster C, Lanzhou, Gansu, Peoples R China;
2.Gansu Prov Meteorol Bereau, Dingxi Meteorol Bereau, Dingxi, Peoples R China
推荐引用方式
GB/T 7714
Wang, Xiaoping,Guo, Ni,Li, Qiaozhen. Yield estimation for spring wheat based on hyperspectral data in semi-arid region[C]:IEEE,2018:387-390.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Xiaoping]的文章
[Guo, Ni]的文章
[Li, Qiaozhen]的文章
百度学术
百度学术中相似的文章
[Wang, Xiaoping]的文章
[Guo, Ni]的文章
[Li, Qiaozhen]的文章
必应学术
必应学术中相似的文章
[Wang, Xiaoping]的文章
[Guo, Ni]的文章
[Li, Qiaozhen]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。