Arid
PV Power Prediction in Qatar Based on Machine Learning Approach
Benhmed, Kamel; Touati, Farid; Al-Hitmi, Mohammed; Chowdhury, Noor A.; Gonzales, Antonio Jr S. P.; Qiblawey, Yazan; Benammar, Mohieddine
通讯作者Benhmed, Kamel ; Touati, Farid
会议名称6th International Renewable and Sustainable Energy Conference (IRSEC)
会议日期DEC 05-08, 2018
会议地点Rabat, MOROCCO
英文摘要

PV output power is highly sensitive to many environmental parameters, hence, power available from plants based on this technology will be affected, especially in harsh environments such that of Gulf countries. In order to conduct the PV performance evaluation and analysis in arid regions in terms of predicting the output power yield, proper acquisition, recording and investigation of relevant environmental parameters are considered to guarantee accuracy in the predictive models. In this paper, the authors analyze and predict the effects of these relevant environment parameters (e.g. ambient temperature, PV surface temperature, irradiance, relative humidity, dust settlement and wind speed) on the performance of PV cells in terms of output power. Different predictive models based on Machine Learning approach are trained and tested to estimate the actual PV output power in reference with an adequate time frame. Results show that the developed models could predict the PV output power accurately.


英文关键词Feature Selection Machine Learning PV panels Regression
来源出版物2018 6TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC)
ISSN2380-7385
EISSN2380-7393
出版年2018
页码174-177
EISBN978-1-7281-1182-7
出版者IEEE
类型Proceedings Paper
语种英语
国家Qatar
收录类别CPCI-S
WOS记录号WOS:000469362700033
WOS类目Green & Sustainable Science & Technology ; Energy & Fuels ; Engineering, Electrical & Electronic
WOS研究方向Science & Technology - Other Topics ; Energy & Fuels ; Engineering
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/307643
作者单位Qatar Univ, Dept Elect Engn, Doha, Qatar
推荐引用方式
GB/T 7714
Benhmed, Kamel,Touati, Farid,Al-Hitmi, Mohammed,et al. PV Power Prediction in Qatar Based on Machine Learning Approach[C]:IEEE,2018:174-177.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Benhmed, Kamel]的文章
[Touati, Farid]的文章
[Al-Hitmi, Mohammed]的文章
百度学术
百度学术中相似的文章
[Benhmed, Kamel]的文章
[Touati, Farid]的文章
[Al-Hitmi, Mohammed]的文章
必应学术
必应学术中相似的文章
[Benhmed, Kamel]的文章
[Touati, Farid]的文章
[Al-Hitmi, Mohammed]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。