Arid
NPP ESTIMATION USING TIME-SERIES GF-1 DATA IN SPARSE VEGETATION AREA -A CASE STUDY IN ZHENGLANQI OF INNNER MONGLOLIA, CHINA
Sun, Bin; Li, Zengyuan; Gao, Zhihai; Gao, Wentao; Zhang, Yuanyuan; Ding, Xiangyuan; Li, Changlong
通讯作者Gao, Zhihai
会议名称38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
会议日期JUL 22-27, 2018
会议地点Valencia, SPAIN
英文摘要

Net primary productivity (NPP) is an important ecological indicator to evaluate ecosystem, and it is useful for land degradation assessment and monitoring. However, owing to dryland's particularity, retrieving vegetation properties from satellite remote sensing presents some significant challenges in sparse vegetation area. In this study, based on the wildly used time-series GF-1 data, the NPP estimation in sparse vegetation area was analyzed. Results showed that GF-1 data have high spatial and high temporal resolution characteristics, it is useful to distinguish land cover types in semi-arid areas based on NDVI time series data, the accuracy was 83.37% and Kappa coefficient was 0.79. Some key parameters of grassland were simulated and optimized based on CASA model. Compared with the measured data, the result was R-2 with 0.71, and results indicated that NPP estimation by GF-1 data based on the new parameters in semi-arid area is feasible.


英文关键词GF data NPP CASA model Parameter optimization
来源出版物IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM
ISSN2153-6996
出版年2018
页码3971-3974
EISBN978-1-5386-7150-4
出版者IEEE
类型Proceedings Paper
语种英语
国家Peoples R China
收录类别CPCI-S
WOS记录号WOS:000451039803241
WOS类目Engineering, Electrical & Electronic ; Geosciences, Multidisciplinary ; Remote Sensing
WOS研究方向Engineering ; Geology ; Remote Sensing
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/307418
作者单位Chinese Acad Forestry, Inst Forest Resource Informat Tech, 1 Dongxiaofu, Beijing 100091, Peoples R China
推荐引用方式
GB/T 7714
Sun, Bin,Li, Zengyuan,Gao, Zhihai,et al. NPP ESTIMATION USING TIME-SERIES GF-1 DATA IN SPARSE VEGETATION AREA -A CASE STUDY IN ZHENGLANQI OF INNNER MONGLOLIA, CHINA[C]:IEEE,2018:3971-3974.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Bin]的文章
[Li, Zengyuan]的文章
[Gao, Zhihai]的文章
百度学术
百度学术中相似的文章
[Sun, Bin]的文章
[Li, Zengyuan]的文章
[Gao, Zhihai]的文章
必应学术
必应学术中相似的文章
[Sun, Bin]的文章
[Li, Zengyuan]的文章
[Gao, Zhihai]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。