Arid
IMPROVED CHARACTERIZATION OF DRYLAND DEGRADATION USING TRENDS IN VEGETATION/RAINFALL SEQUENTIAL LINEAR REGRESSION (SERGS-TREND)
Abel, Christin1; Brandt, Martin1; Tagesson, Torbern1,2; Fensholt, Rasmus1
通讯作者Abel, Christin
会议名称38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
会议日期JUL 22-27, 2018
会议地点Valencia, SPAIN
英文摘要

Land degradation in drylands has been investigated extensively over recent decades and several remote sensing based techniques attempt to decouple the human influence from the natural climate variability, but are contested in literature. We introduce a novel approach termed SeRGS-TREND that is designed to monitor land degradation by suppressing the impact from climate variability and highlight vegetation disturbances may it be human or climate-induced. SeRGS-TREND is based on the interpretation of the slope of a linear regression analysis within a sequentially moving window along the temporal axis of the time series of remote sensing data. The use of a moving window increases the probability of a statistically significant linear vegetation-rainfall relationship (VRR), which in turn provides an improved statistical basis for the results produced and thereby confidence in the assessment of degradation. We test and compare SeRGS-TREND and the commonly used RESTREND by simulating different degradation scenarios and find that SeRGS reveals both, more significant and more exact information about degradation events (e.g. starting and end point) while keeping the VRR correlation coefficients high, thus rendering results more reliable.


英文关键词land degradation drylands time series analysis SeRGS-TREND
来源出版物IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM
ISSN2153-6996
出版年2018
页码2988-2991
EISBN978-1-5386-7150-4
出版者IEEE
类型Proceedings Paper
语种英语
国家Denmark;Sweden
收录类别CPCI-S
WOS记录号WOS:000451039803009
WOS关键词LAND DEGRADATION ; SAHEL ; DESERTIFICATION ; PATTERNS ; CLIMATE ; NDVI3G
WOS类目Engineering, Electrical & Electronic ; Geosciences, Multidisciplinary ; Remote Sensing
WOS研究方向Engineering ; Geology ; Remote Sensing
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/307249
作者单位1.Univ Copenhagen, Dept Geosci & Nat Resource Management, Oster Voldgade 10, DK-1350 Copenhagen, Denmark;
2.Lund Univ, Dept Phys Geog & Ecosyst Sci, Solvegatan 12, SE-22362 Lund, Sweden
推荐引用方式
GB/T 7714
Abel, Christin,Brandt, Martin,Tagesson, Torbern,et al. IMPROVED CHARACTERIZATION OF DRYLAND DEGRADATION USING TRENDS IN VEGETATION/RAINFALL SEQUENTIAL LINEAR REGRESSION (SERGS-TREND)[C]:IEEE,2018:2988-2991.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Abel, Christin]的文章
[Brandt, Martin]的文章
[Tagesson, Torbern]的文章
百度学术
百度学术中相似的文章
[Abel, Christin]的文章
[Brandt, Martin]的文章
[Tagesson, Torbern]的文章
必应学术
必应学术中相似的文章
[Abel, Christin]的文章
[Brandt, Martin]的文章
[Tagesson, Torbern]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。