Arid
DOI10.1109/CLOUD.2018.00020
Oases: An Online Scalable Spam Detection System for Social Networks
Xu, Hailu1; Hu, Liting1; Liu, Pinchao1; Xiao, Yao1; Wang, Wentao1; Dayal, Jai2; Wang, Qingyang3; Tang, Yuzhe4
通讯作者Xu, Hailu
会议名称11th IEEE International Conference on Cloud Computing (CLOUD) Part of the IEEE World Congress on Services
会议日期JUL 02-07, 2018
会议地点San Francisco, CA
英文摘要

Web-based social networks enable new community-based opportunities for participants to engage, share their thoughts, and interact with each other. Theses related activities such as searching and advertising are threatened by spammers, content polluters, and malware disseminators. We propose a scalable spam detection system, termed Oases, for uncovering social spam in social networks using an online and scalable approach. The novelty of our design lies in two key components: (1) a decentralized DHT-based tree overlay deployment for harvesting and uncovering deceptive spam from social communities; and (2) a progressive aggregation tree for aggregating the properties of these spam posts for creating new spam classifiers to actively filter out new spam. We design and implement the prototype of Oases and discuss the design considerations of the proposed approach. Our large-scale experiments using real-world Twitter data demonstrate scalability, attractive load-balancing, and graceful efficiency in online spam detection for social networks.


英文关键词online social networks spam detection DHT
来源出版物PROCEEDINGS 2018 IEEE 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD)
出版年2018
页码98-105
EISBN978-1-5386-7235-8
出版者IEEE
类型Proceedings Paper
语种英语
国家USA
收录类别CPCI-S
WOS记录号WOS:000454741700013
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS研究方向Computer Science ; Engineering
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/307043
作者单位1.Florida Int Univ, Miami, FL 33199 USA;
2.Intel Corp, Santa Clara, CA 95051 USA;
3.Louisiana State Univ, Baton Rouge, LA 70803 USA;
4.Syracuse Univ, Syracuse, NY 13244 USA
推荐引用方式
GB/T 7714
Xu, Hailu,Hu, Liting,Liu, Pinchao,et al. Oases: An Online Scalable Spam Detection System for Social Networks[C]:IEEE,2018:98-105.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Hailu]的文章
[Hu, Liting]的文章
[Liu, Pinchao]的文章
百度学术
百度学术中相似的文章
[Xu, Hailu]的文章
[Hu, Liting]的文章
[Liu, Pinchao]的文章
必应学术
必应学术中相似的文章
[Xu, Hailu]的文章
[Hu, Liting]的文章
[Liu, Pinchao]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。