Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1109/CLOUD.2018.00020 |
Oases: An Online Scalable Spam Detection System for Social Networks | |
Xu, Hailu1; Hu, Liting1; Liu, Pinchao1; Xiao, Yao1; Wang, Wentao1; Dayal, Jai2; Wang, Qingyang3; Tang, Yuzhe4 | |
通讯作者 | Xu, Hailu |
会议名称 | 11th IEEE International Conference on Cloud Computing (CLOUD) Part of the IEEE World Congress on Services |
会议日期 | JUL 02-07, 2018 |
会议地点 | San Francisco, CA |
英文摘要 | Web-based social networks enable new community-based opportunities for participants to engage, share their thoughts, and interact with each other. Theses related activities such as searching and advertising are threatened by spammers, content polluters, and malware disseminators. We propose a scalable spam detection system, termed Oases, for uncovering social spam in social networks using an online and scalable approach. The novelty of our design lies in two key components: (1) a decentralized DHT-based tree overlay deployment for harvesting and uncovering deceptive spam from social communities; and (2) a progressive aggregation tree for aggregating the properties of these spam posts for creating new spam classifiers to actively filter out new spam. We design and implement the prototype of Oases and discuss the design considerations of the proposed approach. Our large-scale experiments using real-world Twitter data demonstrate scalability, attractive load-balancing, and graceful efficiency in online spam detection for social networks. |
英文关键词 | online social networks spam detection DHT |
来源出版物 | PROCEEDINGS 2018 IEEE 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD) |
出版年 | 2018 |
页码 | 98-105 |
EISBN | 978-1-5386-7235-8 |
出版者 | IEEE |
类型 | Proceedings Paper |
语种 | 英语 |
国家 | USA |
收录类别 | CPCI-S |
WOS记录号 | WOS:000454741700013 |
WOS类目 | Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS研究方向 | Computer Science ; Engineering |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/307043 |
作者单位 | 1.Florida Int Univ, Miami, FL 33199 USA; 2.Intel Corp, Santa Clara, CA 95051 USA; 3.Louisiana State Univ, Baton Rouge, LA 70803 USA; 4.Syracuse Univ, Syracuse, NY 13244 USA |
推荐引用方式 GB/T 7714 | Xu, Hailu,Hu, Liting,Liu, Pinchao,et al. Oases: An Online Scalable Spam Detection System for Social Networks[C]:IEEE,2018:98-105. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。