Arid
Tensor Optimal Scoring for Alzheimer's Disease Detection
Wang, Shuo; Wu, Qiang; Liu, Ju
通讯作者Wang, Shuo
会议名称13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)
会议日期JUL 29-31, 2017
会议地点Guilin, PEOPLES R CHINA
英文摘要

In recent years, the universal application of magnetic resonance imaging has given a new diagnostic approach for lots of diseases, including Alzheimer's disease (AD). In this paper, we propose a new classification framework for AD detection. To avoid the curse of dimensionality problem, a new dimension reduction algorithm in tensor space called tensor optimal scoring (TOS) was proposed to extract efficient features from MRI data of AD. Alternating least square optimization was employed to estimate the projection vector and optimal scores. We validated the effectiveness of our proposed method on OASIS dataset. The experimental results showed that our method outperformed the traditional methods especially for higher order MRI data.


英文关键词Alzheimer' s disease Optimal scoring Tensor analysis Elastic net Feature extraction
来源出版物2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD)
出版年2017
页码161-165
EISBN978-1-5386-2165-3
出版者IEEE
类型Proceedings Paper
语种英语
国家Peoples R China
收录类别CPCI-S
WOS记录号WOS:000437355300028
WOS关键词PRINCIPAL COMPONENT ANALYSIS ; DISCRIMINANT-ANALYSIS ; SELECTION ; YOUNG ; MRI
WOS类目Computer Science, Artificial Intelligence
WOS研究方向Computer Science
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/305866
作者单位Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Shandong, Peoples R China
推荐引用方式
GB/T 7714
Wang, Shuo,Wu, Qiang,Liu, Ju. Tensor Optimal Scoring for Alzheimer's Disease Detection[C]:IEEE,2017:161-165.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Shuo]的文章
[Wu, Qiang]的文章
[Liu, Ju]的文章
百度学术
百度学术中相似的文章
[Wang, Shuo]的文章
[Wu, Qiang]的文章
[Liu, Ju]的文章
必应学术
必应学术中相似的文章
[Wang, Shuo]的文章
[Wu, Qiang]的文章
[Liu, Ju]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。