Arid
Neural Network based Denoised Methods For Retinal Fundus Images and MRI Brain Images
Soomro, Toufique Ahmed1; Gao, Junbin2
通讯作者Soomro, Toufique Ahmed
会议名称International Joint Conference on Neural Networks (IJCNN)
会议日期JUL 24-29, 2016
会议地点Vancouver, CANADA
英文摘要

Image processing is an active research area in which medical image processing is a highly challenging field. Medical imaging techniques are used to image the inner portion of human body for medical diagnosis. In this research work, retinal colour fundus images and MRI brain images noise level has been improved. Fundus Fluorescein Angiography (FFA) is the invasive based technique used to give high contrast retinal images but it used contrast injection and other side Magnetic Resonance Imaging (MRI) is a medical used to produce the high contrast image. The biomedical images are mostly suffered from the varied contrast and due to varied contrast, the details of images are not observed properly even after the image enhancement techniques because the presence of noise. In this research, The High-Resolution Fundus (HRF) database is used and it contained 36 images of two pairs (18 good quality images and 18 bad quality images). Oasis MRI brain image database is also used and it contained 30 images. Radial Basis Function (RBF) neural network gave highest PSNR improvement of 53% and 56% in HRF retinal images database and Oasis MRI Brain images database as compared to wavelet technique (18%, 35%) and sub space method(29%, 9%). The optimal denoised method is one important step to get better result of contrast normalisation techniques and give accurate results to diagnose the disease progress.


来源出版物2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)
ISSN2161-4393
出版年2016
页码1151-1157
EISBN978-1-5090-0619-9
出版者IEEE
类型Proceedings Paper
语种英语
国家Australia
收录类别CPCI-S
WOS记录号WOS:000399925501044
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS研究方向Computer Science ; Engineering
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/305863
作者单位1.Charles Sturt Univ, Sch Comp & Math, Bathurst, NSW 2795, Australia;
2.Univ Sydney, Business Sch, Camperdown, NSW 2006, Australia
推荐引用方式
GB/T 7714
Soomro, Toufique Ahmed,Gao, Junbin. Neural Network based Denoised Methods For Retinal Fundus Images and MRI Brain Images[C]:IEEE,2016:1151-1157.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Soomro, Toufique Ahmed]的文章
[Gao, Junbin]的文章
百度学术
百度学术中相似的文章
[Soomro, Toufique Ahmed]的文章
[Gao, Junbin]的文章
必应学术
必应学术中相似的文章
[Soomro, Toufique Ahmed]的文章
[Gao, Junbin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。