Arid
Detecting heterogeneity in PV modules from massive real-world "step" I-V curves: A machine learning approach
Hu, Yang1; Schnabel, Erdmut2; Koehl, Michael2; French, Roger H.1; Peshek, Timothy J.1
通讯作者Hu, Yang
会议名称43rd IEEE Photovoltaic Specialists Conference (PVSC)
会议日期JUN 05-10, 2016
会议地点Portland, OR
英文摘要

We demonstrate that I-V curves with bypass diodes in forward bias can be useful in learning the heterogeneity in PV modules. In the laboratory-based experiments, we show that heterogeneity in a PV module can be detected from "step" IV curves that are collected under non-uniform irradiance. On the other hand, heterogeneous cell performance can lead to bypassing even under uniform irradiance. This hypothesis was tested using a fabricated 4-cell mini-module with cells that were engineered to have highly heterogeneous front contact resistivity and a SPICE-based circuit model. We find good agreement between the experimentally determined curve and simulations. We illustrate a technique for automatically classifying and analyzing massive real-world I-V curves and for gaining insights into the performance of PV modules. By classifying 3.7 million I-V curves, we demonstrate the occurrence of "step" I-V curves under two irradiance conditions: under non-uniform irradiance condition, mirror augmented PV module in Cleveland, Ohio; and under uniform irraidance condition at the Negev Desert, Israel, Gran Canaria, Spain and Mount Zugspitze, Germany. Under the uniform irradiance conditions, we found that the percentage of "step" I-V curves in all three I-V curve types gradually increase over time. This indicates the electrical characteristics within a PV module change from homogeneous to heterogeneous. Since the "step" I-V curves have a lower maximum power and a lower fill factor than normal I-V curves at the same irradiance condition, the heterogeneity in I-V module directly cause power degradation.


来源出版物2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC)
ISSN0160-8371
出版年2016
页码279-284
EISBN978-1-5090-2724-8
出版者IEEE
类型Proceedings Paper
语种英语
国家USA;Germany
收录类别CPCI-S
WOS记录号WOS:000399818700059
WOS类目Energy & Fuels ; Engineering, Electrical & Electronic ; Physics, Applied
WOS研究方向Energy & Fuels ; Engineering ; Physics
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/305240
作者单位1.Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA;
2.Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
推荐引用方式
GB/T 7714
Hu, Yang,Schnabel, Erdmut,Koehl, Michael,et al. Detecting heterogeneity in PV modules from massive real-world "step" I-V curves: A machine learning approach[C]:IEEE,2016:279-284.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Yang]的文章
[Schnabel, Erdmut]的文章
[Koehl, Michael]的文章
百度学术
百度学术中相似的文章
[Hu, Yang]的文章
[Schnabel, Erdmut]的文章
[Koehl, Michael]的文章
必应学术
必应学术中相似的文章
[Hu, Yang]的文章
[Schnabel, Erdmut]的文章
[Koehl, Michael]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。