Arid
DOI10.1109/IGARSS.2016.7729196
SPARSE GRAPH REGULARIZATION FOR ROBUST CROP MAPPING USING HYPERSPECTRAL REMOTELY SENSED IMAGERY: A CASE STUDY IN HEIHE, ZHANGYE OASIS
Xue, Zhaohui1; Su, Hongjun1; Du, Peijun2
通讯作者Xue, Zhaohui
会议名称36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
会议日期JUL 10-15, 2016
会议地点Beijing, PEOPLES R CHINA
英文摘要

In this research, a novel sparse graph regularization (SGR) method was presented, aiming at robust crop mapping using hyperspectral imagery with very few in situ data. The core of SGR lies in propagating labels from known data to unknown, which is triggered by: 1) the fraction matrix generated for the large unknown data by using an effective sparse representation algorithm with respect to the few training data serving as the dictionary; 2) the prediction function estimated for the few training data by formulating a regularization model based on sparse graph. Then, the labels of large unknown data can be obtained by maximizing the posterior probability distribution based on the two ingredients. The study area is located at Zhangye oasis in the middle reaches of Heihe watershed, Gansu, China, where eight crop types were mapped with Compact Airborne Spectrographic Imager (CASI) and Shortwave Infrared Airborne Spectrogrpahic Imager (SASI) hyperspectral data. Experimental results demonstrate that the proposed method significantly outperforms other classifiers, with an overall accuracy of 87.43% and a kappa value of 0.827 (5 labeled samples per class), which are respectively, 9%-30% and 0.1-0.3 higher than other counterparts.


英文关键词Hyperspectral remote sensing crop mapping sparse graph regularization Heihe watershed CASI/SASI
来源出版物2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)
ISSN2153-6996
出版年2016
页码779-782
EISBN978-1-5090-3332-4
出版者IEEE
类型Proceedings Paper
语种英语
国家Peoples R China
收录类别CPCI-S
WOS记录号WOS:000388114600192
WOS关键词CLASSIFICATION
WOS类目Engineering, Electrical & Electronic ; Geosciences, Multidisciplinary ; Remote Sensing
WOS研究方向Engineering ; Geology ; Remote Sensing
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/305179
作者单位1.Hohai Univ, Nanjing, Jiangsu, Peoples R China;
2.Nanjing Univ, Nanjing, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Xue, Zhaohui,Su, Hongjun,Du, Peijun. SPARSE GRAPH REGULARIZATION FOR ROBUST CROP MAPPING USING HYPERSPECTRAL REMOTELY SENSED IMAGERY: A CASE STUDY IN HEIHE, ZHANGYE OASIS[C]:IEEE,2016:779-782.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xue, Zhaohui]的文章
[Su, Hongjun]的文章
[Du, Peijun]的文章
百度学术
百度学术中相似的文章
[Xue, Zhaohui]的文章
[Su, Hongjun]的文章
[Du, Peijun]的文章
必应学术
必应学术中相似的文章
[Xue, Zhaohui]的文章
[Su, Hongjun]的文章
[Du, Peijun]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。