Arid
DOI10.1109/IGARSS.2016.7730413
LITHOLOGICAL MAPPING FROM HYPERSPECTRAL IMAGERY USING EXTENDED ONE-CLASS KERNEL SPARSE REPRESENTATION
Li, Peijun1; Song, Benqin2
通讯作者Li, Peijun
会议名称36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
会议日期JUL 10-15, 2016
会议地点Beijing, PEOPLES R CHINA
英文摘要

This paper presented a new method of lithological mapping using extended one-class kernel sparse representation, a new one-class classifier. In the proposed method, to address spectral variability of lithological types, learning vector quantization for novelty detection was adopted to produce several clusters before the classification process. The one-class kernel sparse representation was adopted to classify each obtained cluster. The proposed method was evaluated and validated in lithological mapping using EO-1 Hyperion hyperspectral data over an arid region in Xinjiang area, China.


英文关键词spectral variability lithological mapping kernel sparse representation one-class classification
来源出版物2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)
ISSN2153-6996
出版年2016
页码5426-5429
EISBN978-1-5090-3332-4
出版者IEEE
类型Proceedings Paper
语种英语
国家Peoples R China
收录类别CPCI-S
WOS记录号WOS:000388114605089
WOS类目Engineering, Electrical & Electronic ; Geosciences, Multidisciplinary ; Remote Sensing
WOS研究方向Engineering ; Geology ; Remote Sensing
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/304982
作者单位1.Peking Univ, Sch Earth & Space Sci, Inst Remote Sensing & GIS, Beijing 100871, Peoples R China;
2.China Acad Elect & Informat Technol, Beijing 100041, Peoples R China
推荐引用方式
GB/T 7714
Li, Peijun,Song, Benqin. LITHOLOGICAL MAPPING FROM HYPERSPECTRAL IMAGERY USING EXTENDED ONE-CLASS KERNEL SPARSE REPRESENTATION[C]:IEEE,2016:5426-5429.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Peijun]的文章
[Song, Benqin]的文章
百度学术
百度学术中相似的文章
[Li, Peijun]的文章
[Song, Benqin]的文章
必应学术
必应学术中相似的文章
[Li, Peijun]的文章
[Song, Benqin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。