Arid
DOI10.1117/12.2186786
Remote Estimation of GPP in Temperate Grassland: Implications of the Uncertainty in GPP Estimation in Semi-arid Ecosystems Using MODIS Data
Liu, Shishi1; Peng, Yi2; Brunsell, Nathaniel3; Guan, Qingfeng4,5
通讯作者Liu, Shishi
会议名称Conference on Remote Sensing and Modeling of Ecosystems for Sustainability XII
会议日期AUG 11-12, 2015
会议地点San Diego, CA
英文摘要

This study analyzed grassland gross primary production (GPP) estimated by the Temperature and Greenness (TG) model and the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm along the mean precipitation gradient and as a function of interannual variability in site-level precipitation. The calibrated TG model and MODIS algorithm appeared to provide accurate GPP estimations at three study sites with varying precipitation. However, the evaluation for each site/year demonstrated the variations of the accuracy of GPP estimates among different sites and years. GPP were overestimated at the driest site among three study sites, and during the dry years of the semiarid site. Both models provided more accurate GPP estimates for the wet site and during the wet and normal years of the semiarid sites. Calibrating both models for each site/year showed that the parameters of both models varied among sites and years, especially for the TG model. The relationship between flux-tower GPP observations and (scaled EVI *scaled LST) for the TG model and the relationship between GPP observations and (fPAR*PAR*T-min scalar*VPD scalar) for the MODIS algorithm were different during green-up and dry-down period of grassland during the dry years at semiarid sites. This result implied that different relationships at different growing stages might be one of the major reasons for the overestimation of GPP by the TG model and the MODIS algorithm for semiarid grassland where water is a limiting resource. Thus, both TG model and MODIS algorithm should be used with caution in the arid and semiarid grassland regions.


英文关键词gross primary production (GPP) Temperature and Greenness (TG) model Moderate Resolution Imaging Spectroradiometer (MODIS) grassland
来源出版物REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY XII
ISSN0277-786X
EISSN1996-756X
出版年2015
卷号9610
EISBN978-1-62841-776-0
出版者SPIE-INT SOC OPTICAL ENGINEERING
类型Proceedings Paper
语种英语
国家Peoples R China;USA
收录类别CPCI-S
WOS记录号WOS:000366501400031
WOS关键词GROSS PRIMARY PRODUCTION ; ENHANCED VEGETATION INDEX ; PRIMARY PRODUCTIVITY ; SURFACE-TEMPERATURE ; CHLOROPHYLL CONTENT ; LAND-SURFACE ; ALGORITHM ; TOWER ; CROPS ; EVI
WOS类目Remote Sensing ; Optics
WOS研究方向Remote Sensing ; Optics
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/304124
作者单位1.Huazhong Agr Univ, Coll Resources & Environm, Wuahn 430070, Hubei, Peoples R China;
2.Wuhan Univ, Coll Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China;
3.Univ Kansas, Dept Geog, Lawrence, KS 66045 USA;
4.China Univ Geosci, Natl Engn Res Ctr GIS, Wuhan 430074, Hubei, Peoples R China;
5.China Univ Geosci, Sch Informat Engn, Wuhan 430074, Hubei, Peoples R China
推荐引用方式
GB/T 7714
Liu, Shishi,Peng, Yi,Brunsell, Nathaniel,et al. Remote Estimation of GPP in Temperate Grassland: Implications of the Uncertainty in GPP Estimation in Semi-arid Ecosystems Using MODIS Data[C]:SPIE-INT SOC OPTICAL ENGINEERING,2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Shishi]的文章
[Peng, Yi]的文章
[Brunsell, Nathaniel]的文章
百度学术
百度学术中相似的文章
[Liu, Shishi]的文章
[Peng, Yi]的文章
[Brunsell, Nathaniel]的文章
必应学术
必应学术中相似的文章
[Liu, Shishi]的文章
[Peng, Yi]的文章
[Brunsell, Nathaniel]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。