Arid
Daily Global Solar Radiation Forecasting Over a Desert Area Using NAR Neural Networks Comparison with Conventional Methods
Gairaa, Kacem1; Chellali, Farouk1; Benkaciali, Said1; Abdallah, Khellaf2; Messlem, Youcef3
通讯作者Gairaa, Kacem
会议名称4th International Conference on Renewable Energy Research and Applications (ICRERA)
会议日期NOV 22-25, 2015
会议地点Palermo, ITALY
英文摘要

This paper presents a solar radiation forecasting method using nonlinear autoregressive neural networks (NAR). NAR predicts a clearness index that is used to forecast global solar radiations. The NAR model is based on the feed forward multilayer perception model with two inputs and one output. Data of three years (2012-2014) of global solar radiation time-series for Ghardaia site (desert area), south Algeria have been used to develop the model. A comparison with Box-Jenkins (ARMA) method was done, and the proposed approach was found to be more efficient and accurate. The forecasted values are compared with the measured data and the accuracy of the models is judged based on the statistical analysis such as root mean square error (RMSE) and his normalized value (nRMSE), mean bias error (MBE) and his normalized value (nMBE) and the mean percentage error (MPE). The obtained results showed an improvement of the NAR model over ARMA in term of mean absolute error (MPE) of 23.89% and a decrease in RMSE values of about 15.50% while the coefficient correlation was found to be 0.91.


英文关键词Solar radiation Horizontal surface ANN ARMA
来源出版物2015 INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA)
ISSN2377-6897
出版年2015
页码567-571
EISBN978-1-4799-9982-8
出版者IEEE
类型Proceedings Paper
语种英语
国家Algeria
收录类别CPCI-S
WOS记录号WOS:000379126300089
WOS类目Energy & Fuels ; Engineering, Electrical & Electronic
WOS研究方向Energy & Fuels ; Engineering
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/304067
作者单位1.CDER, URAER, Ghardaia 47133, Algeria;
2.CDER, Algiers 16340, Algeria;
3.Univ Ibn Khaldoun, Lab Genie Elect & Plasmas, Tiaret 14000, Algeria
推荐引用方式
GB/T 7714
Gairaa, Kacem,Chellali, Farouk,Benkaciali, Said,et al. Daily Global Solar Radiation Forecasting Over a Desert Area Using NAR Neural Networks Comparison with Conventional Methods[C]:IEEE,2015:567-571.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gairaa, Kacem]的文章
[Chellali, Farouk]的文章
[Benkaciali, Said]的文章
百度学术
百度学术中相似的文章
[Gairaa, Kacem]的文章
[Chellali, Farouk]的文章
[Benkaciali, Said]的文章
必应学术
必应学术中相似的文章
[Gairaa, Kacem]的文章
[Chellali, Farouk]的文章
[Benkaciali, Said]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。