Arid
Learning Large-Scale Dynamic Discrete Choice Models of Spatio-Temporal Preferences with Application to Migratory Pastoralism in East Africa
Ermon, Stefano1; Xue, Yexiang2; Toth, Russell3; Dilkina, Bistra4; Bernstein, Richard2; Damoulas, Theodoros5; Clark, Patrick6; DeGloria, Steve2; Mude, Andrew7; Barrett, Christopher2; Gomes, Carla P.2
通讯作者Ermon, Stefano
会议名称29th Association-for-the-Advancement-of-Artificial-Intelligence (AAAI) Conference on Artificial Intelligence
会议日期JAN 25-30, 2015
会议地点Austin, TX
英文摘要

Understanding spatio-temporal resource preferences is paramount in the design of policies for sustainable development. Unfortunately, resource preferences are often unknown to policy-makers and have to be inferred from data. In this paper we consider the problem of inferring agents' preferences from observed movement trajectories, and formulate it as an Inverse Reinforcement Learning (IRL) problem. With the goal of informing policy-making, we take a probabilistic approach and consider generative models that can be used to simulate behavior under new circumstances such as changes in resource availability, access policies, or climate. We study the Dynamic Discrete Choice (DDC) models from econometrics and prove that they generalize the Max-Entropy IRL model, a widely used probabilistic approach from the machine learning literature. Furthermore, we develop SPL-GD, a new learning algorithm for DDC models that is considerably faster than the state of the art and scales to very large datasets.


We consider an application in the context of pastoralism in the arid and semi-arid regions of Africa, where migratory pastoralists face regular risks due to resource availability, droughts, and resource degradation from climate change and development. We show how our approach based on satellite and survey data can accurately model migratory pastoralism in East Africa and that it considerably outperforms other approaches on a large-scale real-world dataset of pastoralists' movements in Ethiopia collected over 3 years.


来源出版物PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE
出版年2015
页码644-650
EISBN*****************
出版者ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE
类型Proceedings Paper
语种英语
国家USA;Australia;Kenya
收录类别CPCI-S
WOS记录号WOS:000485625500089
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS研究方向Computer Science ; Engineering
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/303889
作者单位1.Stanford Univ, Stanford, CA 94305 USA;
2.Cornell Univ, Ithaca, NY 14853 USA;
3.Univ Sydney, Sydney, NSW, Australia;
4.Georgia Tech, Atlanta, GA USA;
5.NYU CUSP, New York, NY USA;
6.USDA, Res Serv, Washington, DC USA;
7.Int Livestock Res Inst, Nairobi, Kenya
推荐引用方式
GB/T 7714
Ermon, Stefano,Xue, Yexiang,Toth, Russell,et al. Learning Large-Scale Dynamic Discrete Choice Models of Spatio-Temporal Preferences with Application to Migratory Pastoralism in East Africa[C]:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2015:644-650.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ermon, Stefano]的文章
[Xue, Yexiang]的文章
[Toth, Russell]的文章
百度学术
百度学术中相似的文章
[Ermon, Stefano]的文章
[Xue, Yexiang]的文章
[Toth, Russell]的文章
必应学术
必应学术中相似的文章
[Ermon, Stefano]的文章
[Xue, Yexiang]的文章
[Toth, Russell]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。