Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/978-3-662-49014-3_21 |
Identification of Remote Sensing Image of Adverse Geological Body Based on Classification | |
Li, Xiang1; Zhang, Hao2 | |
通讯作者 | Zhang, Hao |
会议名称 | 10th International Conference on Bio-Inspired Computing - Theories and Applications (BIC-TA) |
会议日期 | SEP 25-28, 2015 |
会议地点 | Hefei, PEOPLES R CHINA |
英文摘要 | Identification of interested landmark is a hot topic in the field of remote sensing. Taking QuickBird as an example, this paper focuses on the typical adverse geological phenomenon, such as desert, saltmarsh, gobi, lakes, etc., in Yuli Rob Village of Xinjiang Province. Three classification methods, i.e., extreme learning machine, SVM algorithm, and K-means algorithm, are used for classification and recognition of remote sensing image. The image recognition rate and accuracy are analyzed. Experimental results and comparison analysis indicate that extreme learning machine algorithm, SVM algorithm and K-means algorithm in general is not significant. The SVM algorithm for image continuity provides better results. The extreme learning machine obtains classification results, yet it is easy to fall into local optimum. |
英文关键词 | Remote sensing image Adverse geological Classification Image recognition |
来源出版物 | BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2015 |
ISSN | 1865-0929 |
出版年 | 2015 |
卷号 | 562 |
页码 | 232-241 |
ISBN | 978-3-662-49013-6 |
EISBN | 978-3-662-49014-3 |
出版者 | SPRINGER-VERLAG BERLIN |
类型 | Proceedings Paper |
语种 | 英语 |
国家 | Peoples R China |
收录类别 | CPCI-S |
WOS记录号 | WOS:000369890300021 |
WOS关键词 | EXTREME LEARNING-MACHINE ; HIDDEN NODES ; NETWORKS |
WOS类目 | Computer Science, Theory & Methods |
WOS研究方向 | Computer Science |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/303595 |
作者单位 | 1.China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China; 2.China Univ Geosci, Sch Engn, Wuhan 430074, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Xiang,Zhang, Hao. Identification of Remote Sensing Image of Adverse Geological Body Based on Classification[C]:SPRINGER-VERLAG BERLIN,2015:232-241. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Xiang]的文章 |
[Zhang, Hao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Xiang]的文章 |
[Zhang, Hao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Xiang]的文章 |
[Zhang, Hao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。