Arid
DOI10.1117/12.2192821
Introducing a rain adjusted vegetation index (RAVI) for improvement long term trend analyses in vegetation dynamics
Wessollek, Christine1; Karrasch, Pierre2; Osunmadewa, Babatunde1
通讯作者Wessollek, Christine
会议名称15th SPIE Conference on Earth Resources and Environmental Remote Sensing/GIS Applications VI
会议日期SEP 22-24, 2015
会议地点Toulouse, FRANCE
英文摘要

It seems to be obvious that precipitation has a major impact on greening during the rainy season in semi-arid regions. First results(1) imply a strong dependence of NDVI on rainfall. Therefore it will be necessary to consider specific rainfall events besides the known ordinary annual cycle. Based on this fundamental idea, the paper will introduce the development of a rain adjusted vegetation index (RAVI). The index is based on the enhancement of the well-known normalized difference vegetation index (NDVI2) by means of TAMSAT rainfall data and includes a 3-step procedure of determining RAVI. Within the first step both time series were analysed over a period of 29 years to find best cross correlation values between TAMSAT rainfall and NDVI signal itself. The results indicate the strongest correlation for a weighted mean rainfall for a period of three months before the corresponding NDVI value. Based on these results different mathematical models (linear, logarithmic, square root, etc.) are tested to find a functional relation between the NDVI value and the 3-months rainfall period before (0.8). Finally, the resulting NDVI-Rain-Model can be used to determine a spatially individual correction factor to transform every NDVI value into an appropriate rain adjusted vegetation index (RAVI).


英文关键词NDVI Rainfall GIMMS TAMSAT time series rain-adjusted vegetation index regression analysis
来源出版物EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VI
ISSN0277-786X
EISSN1996-756X
出版年2015
卷号9644
EISBN978-1-62841-854-5
出版者SPIE-INT SOC OPTICAL ENGINEERING
类型Proceedings Paper
语种英语
国家Germany
收录类别CPCI-S
WOS记录号WOS:000367470500013
WOS关键词TIME-SERIES ; UNIT-ROOT ; PATTERNS ; NDVI
WOS类目Remote Sensing ; Optics
WOS研究方向Remote Sensing ; Optics
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/303550
作者单位1.Tech Univ Dresden, Inst Photogrammetry & Remote Sensing, D-01069 Dresden, Germany;
2.Tech Univ Dresden, Professorship Geoinformat Syst, D-01069 Dresden, Germany
推荐引用方式
GB/T 7714
Wessollek, Christine,Karrasch, Pierre,Osunmadewa, Babatunde. Introducing a rain adjusted vegetation index (RAVI) for improvement long term trend analyses in vegetation dynamics[C]:SPIE-INT SOC OPTICAL ENGINEERING,2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wessollek, Christine]的文章
[Karrasch, Pierre]的文章
[Osunmadewa, Babatunde]的文章
百度学术
百度学术中相似的文章
[Wessollek, Christine]的文章
[Karrasch, Pierre]的文章
[Osunmadewa, Babatunde]的文章
必应学术
必应学术中相似的文章
[Wessollek, Christine]的文章
[Karrasch, Pierre]的文章
[Osunmadewa, Babatunde]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。