Arid
DOI10.1007/978-3-662-49014-3_21
Identification of Remote Sensing Image of Adverse Geological Body Based on Classification
Li, Xiang1; Zhang, Hao2
通讯作者Zhang, Hao
会议名称10th International Conference on Bio-Inspired Computing - Theories and Applications (BIC-TA)
会议日期SEP 25-28, 2015
会议地点Hefei, PEOPLES R CHINA
英文摘要

Identification of interested landmark is a hot topic in the field of remote sensing. Taking QuickBird as an example, this paper focuses on the typical adverse geological phenomenon, such as desert, saltmarsh, gobi, lakes, etc., in Yuli Rob Village of Xinjiang Province. Three classification methods, i.e., extreme learning machine, SVM algorithm, and K-means algorithm, are used for classification and recognition of remote sensing image. The image recognition rate and accuracy are analyzed. Experimental results and comparison analysis indicate that extreme learning machine algorithm, SVM algorithm and K-means algorithm in general is not significant. The SVM algorithm for image continuity provides better results. The extreme learning machine obtains classification results, yet it is easy to fall into local optimum.


英文关键词Remote sensing image Adverse geological Classification Image recognition
来源出版物BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2015
ISSN1865-0929
出版年2015
卷号562
页码232-241
ISBN978-3-662-49013-6
EISBN978-3-662-49014-3
出版者SPRINGER-VERLAG BERLIN
类型Proceedings Paper
语种英语
国家Peoples R China
收录类别CPCI-S
WOS记录号WOS:000369890300021
WOS关键词EXTREME LEARNING-MACHINE ; HIDDEN NODES ; NETWORKS
WOS类目Computer Science, Theory & Methods
WOS研究方向Computer Science
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/303385
作者单位1.China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China;
2.China Univ Geosci, Sch Engn, Wuhan 430074, Peoples R China
推荐引用方式
GB/T 7714
Li, Xiang,Zhang, Hao. Identification of Remote Sensing Image of Adverse Geological Body Based on Classification[C]:SPRINGER-VERLAG BERLIN,2015:232-241.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xiang]的文章
[Zhang, Hao]的文章
百度学术
百度学术中相似的文章
[Li, Xiang]的文章
[Zhang, Hao]的文章
必应学术
必应学术中相似的文章
[Li, Xiang]的文章
[Zhang, Hao]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。