Knowledge Resource Center for Ecological Environment in Arid Area
OPTICAL MODELING OF REFLECTIVITY LOSS CAUSED BY DUST DEPOSITION ON CSP MIRRORS AND RESTORATION OF ENERGY YIELD BY ELECTRODYNAMIC DUST REMOVAL | |
Stark, Jeremy1; Yellowhair, Julius2; Hudelson, John N.1; Horenstein, Mark1; Mazumder, Malay1 | |
通讯作者 | Stark, Jeremy |
会议名称 | ASME 8th International Conference on Energy Sustainability |
会议日期 | JUN 30-JUL 02, 2014 |
会议地点 | Boston, MA |
英文摘要 | For large scale CSP power plants, vast areas of land are needed in deserts and semi-arid climates where uninterrupted solar irradiance is most abundant. These power facilities use large arrays of mirrors to reflect and concentrate sunlight onto collectors, however, dust deposition on the optical surfaces causes obscuration of sunlight, resulting in large energy-yield losses in solar plants. This problem is compounded by the lack of natural clean water resources for conventional cleaning of solar mirrors, often with reflective surface areas of large installations exceeding a million square meters. To investigate the application of transparent electrodynamic screens (EDS) for efficient and cost effective dust removal from solar mirrors, both optical modeling and experimental verifications were performed. Prototype EDS-integrated mirrors were constructed by depositing a set of parallel transparent electrodes into the sun-facing surface of solar mirrors and coating electrodes with thin transparent dielectric film. Activation of the electrodes with a three-phase voltage creates an electrodynamic field that charges and repels dust electrostatically by Coulomb force and sweeps away particles by a traveling electrodynamic wave. We report here brief discussions on (1) rate of deposition and the properties of dust with respect to their size distribution and chemical composition in semi-arid areas of the southwest US and Mojave Desert and their adhesion to solar mirrors, (2) optical models of: (a) specular reflection losses caused by scattering and absorption by dust particles deposited on the surface based on Mie scattering theory, and (b) reflection loss by the integration of EDS on the mirror surface, computed by FRED ray-tracing model. The objective is to maintain specular reflectivity of 90% or higher by frequent removal of dust by EDS. Our studies show that the incorporation of transparent EDS would cause an initial loss of 3% but would be able to maintain specular reflectivity more than 90% to meet the industrial requirement for CSP plants. Specular reflection measurements taken inside a climate controlled environmental chamber show that EDS integration can restore specular reflectivity and would be able to prevent major degradation of the optical surface caused by the deposition of dust. |
来源出版物 | PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2014, VOL 1 |
出版年 | 2014 |
ISBN | 978-0-7918-4586-8 |
出版者 | AMER SOC MECHANICAL ENGINEERS |
类型 | Proceedings Paper |
语种 | 英语 |
国家 | USA |
收录类别 | CPCI-S |
WOS记录号 | WOS:000361161900039 |
WOS关键词 | NEGEV DESERT ; SOLAR ; TECHNOLOGY |
WOS类目 | Energy & Fuels ; Engineering, Mechanical |
WOS研究方向 | Energy & Fuels ; Engineering |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/302962 |
作者单位 | 1.Boston Univ, Boston, MA 02215 USA; 2.Sandia Natl Labs, Albuquerque, NM USA |
推荐引用方式 GB/T 7714 | Stark, Jeremy,Yellowhair, Julius,Hudelson, John N.,et al. OPTICAL MODELING OF REFLECTIVITY LOSS CAUSED BY DUST DEPOSITION ON CSP MIRRORS AND RESTORATION OF ENERGY YIELD BY ELECTRODYNAMIC DUST REMOVAL[C]:AMER SOC MECHANICAL ENGINEERS,2014. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。