Arid
DOI10.1109/ISCID.2012.55
Remote Sensing Image Classification with Multiple Classifiers based on Support Vector Machines
Wu, Wei; Gao, Guanglai
通讯作者Wu, Wei
会议名称5th International Symposium on Computational Intelligence and Design (ISCID)
会议日期OCT 28-29, 2012
会议地点Hangzhou, PEOPLES R CHINA
英文摘要

Classification accuracy is one of major factors influencing the application of classified image. This Paper proposes a SVM-based multiple classifiers fusion method for remote sensing image classification. We use both spatial Gabor wavelet texture feature and spectral feature to construct SVM classifier separately. Then taking advantage of characteristic of SVM, namely for a given sample, the larger is the distance to the hyperplane, the more reliable is the class label. So the most reliable classification result is thus the one that gives the largest distance. This is our decision fusion rule. Using Landsat ETM+ satellite image as test data, the experimental results indicate that all classes including water, mountain, gobi, vegetation, desert and resident area could be well classified, and the overall accuracy achieved 86.5%, more than other each separate SVM classifier.


英文关键词remote sensing image SVM classification multiple classifiers
来源出版物2012 FIFTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2012), VOL 1
ISSN2165-1701
出版年2012
页码188-191
EISBN978-0-7695-4811-1
出版者IEEE
类型Proceedings Paper
语种英语
国家Peoples R China
收录类别CPCI-S
WOS记录号WOS:000320939300047
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS研究方向Computer Science ; Engineering
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/300672
作者单位Inner Mongolia Univ, Dept Comp Sci, Hohhot, Peoples R China
推荐引用方式
GB/T 7714
Wu, Wei,Gao, Guanglai. Remote Sensing Image Classification with Multiple Classifiers based on Support Vector Machines[C]:IEEE,2012:188-191.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Wei]的文章
[Gao, Guanglai]的文章
百度学术
百度学术中相似的文章
[Wu, Wei]的文章
[Gao, Guanglai]的文章
必应学术
必应学术中相似的文章
[Wu, Wei]的文章
[Gao, Guanglai]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。