Arid
Daily reservoir operating rules by implicit stochastic optimization and artificial neural networks in a semi-arid land of Brazil
Simoes de Farias, Camilo Allyson1; Guimaraes Santos, Celso Augusto2; Celeste, Alcigeimes Batista3
通讯作者Simoes de Farias, Camilo Allyson
会议名称25th General Assembly of the International Union of Geodesy and Geophysics
会议日期JUN 28-JUL 07, 2011
会议地点Melbourne, AUSTRALIA
英文摘要

This paper presents a model based on Implicit Stochastic Optimization (ISO) and Artificial Neural Networks (ANN) for deriving daily operating rules for a reservoir system located in a semi-arid region of Brazil. The ISO procedure consists of optimizing the reservoir system for possible inflow scenarios and then analysing the optimal outcomes in order to generate operating rules. Unlike the common use of regression equations, this study makes use of ANN to develop reservoir hedging rules relating end-of-period reservoir storage to initial storage and other system variables. After the establishment of the ISO-ANN rules, they were tested over a new series of inflows and the outcomes were assessed by means of sustainability criteria. The ISO-ANN rules were shown to be superior to the so-called Standard Linear Operating Policy (SLOP) and equivalent to the results derived by deterministic optimization taking the same inflows as perfect forecasts for one year ahead.


英文关键词reservoir operation artificial neural networks implicit stochastic optimization hedging rules sustainability semi-arid
来源出版物RISK IN WATER RESOURCES MANAGEMENT
ISSN0144-7815
出版年2011
卷号347
页码191-+
ISBN978-1-907161-22-3
出版者INT ASSOC HYDROLOGICAL SCIENCES
类型Proceedings Paper
语种英语
国家Brazil
收录类别CPCI-S
WOS记录号WOS:000297275200029
WOS类目Water Resources
WOS研究方向Water Resources
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/299312
作者单位1.Univ Fed Campina Grande, Acad Unit Environm Sci & Technol, Rua Jairo Vieira Feitosa S-N, BR-58840000 Pombal, PB, Brazil;
2.Univ Fed Paraiba, Dept Civil & Environm Engn, BR-58051900 Joao Pessoa, Paraiba, Brazil;
3.Univ Fed Sergipe, Dept Civil Engn, BR-49100000 Sao Cristovao, Brazil
推荐引用方式
GB/T 7714
Simoes de Farias, Camilo Allyson,Guimaraes Santos, Celso Augusto,Celeste, Alcigeimes Batista. Daily reservoir operating rules by implicit stochastic optimization and artificial neural networks in a semi-arid land of Brazil[C]:INT ASSOC HYDROLOGICAL SCIENCES,2011:191-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Simoes de Farias, Camilo Allyson]的文章
[Guimaraes Santos, Celso Augusto]的文章
[Celeste, Alcigeimes Batista]的文章
百度学术
百度学术中相似的文章
[Simoes de Farias, Camilo Allyson]的文章
[Guimaraes Santos, Celso Augusto]的文章
[Celeste, Alcigeimes Batista]的文章
必应学术
必应学术中相似的文章
[Simoes de Farias, Camilo Allyson]的文章
[Guimaraes Santos, Celso Augusto]的文章
[Celeste, Alcigeimes Batista]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。