Arid
DOI10.4028/www.scientific.net/AMR.121-122.1028
A novel soil moisture predicting method based on artificial neural network and Xinanjiang model
Xu, Jingwen1; Zhao, Junfang2; Zhang, Wanchang3; Xu, Xiaoxun1
通讯作者Xu, Jingwen
会议名称International Conference on Advances in Computer Science and Engineering
会议日期JUL 20-21, 2010
会议地点Qingdao, PEOPLES R CHINA
英文摘要

Soil moisture plays an important role in agricultural drought predicting, therefore there is an increasing demand for detailed predictions of soil moisture, especially at basin scales. However, so far soil moisture predictions are usually obtained as a by-product of climate and weather prediction models coupled with a land surface parameterization scheme, and there has been little dedicated work to meet this urgent need at basin scales. In order to improve the basin hydrological models' performance in the soil moisture forecasting, an integrated soil moisture predicting model based on Artificial Neural Network (ANN) and Xinanjiang model is proposed and presented in this paper. The performance of the new integrated soil moisture predicting model was tested in the Linyi watershed with a drainage area of 10040 km(2), located in the semi-arid area of the eastern China. The results suggest that the soil moisture simulated by the integrated ANN-Xinanjiang model is more agree with the observed ones than that simulated by Xinanjiang, and that the simulated soil moisture by both the models has the similar trend and temporal change pattern with the observed one.


英文关键词ANN Xinanjiang model Linyi Watershed soil moisture prediction
来源出版物NANOTECHNOLOGY AND COMPUTER ENGINEERING
ISSN1022-6680
出版年2010
卷号121-122
页码1028-+
ISBN978-0-87849-251-0
出版者TRANS TECH PUBLICATIONS LTD
类型Proceedings Paper
语种英语
国家Peoples R China
收录类别CPCI-S
WOS记录号WOS:000290925400186
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS研究方向Computer Science ; Engineering ; Science & Technology - Other Topics ; Materials Science
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/299174
作者单位1.Sichuan Agr Univ, Coll Resources & Environm, Yaan 625014, Peoples R China;
2.Chinese Acad Met Sci, CMA, Beijing 100081, Peoples R China;
3.Nanjing Univ, Ctr Hydro Sci Res, Nanjing 210093, Peoples R China
推荐引用方式
GB/T 7714
Xu, Jingwen,Zhao, Junfang,Zhang, Wanchang,et al. A novel soil moisture predicting method based on artificial neural network and Xinanjiang model[C]:TRANS TECH PUBLICATIONS LTD,2010:1028-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Jingwen]的文章
[Zhao, Junfang]的文章
[Zhang, Wanchang]的文章
百度学术
百度学术中相似的文章
[Xu, Jingwen]的文章
[Zhao, Junfang]的文章
[Zhang, Wanchang]的文章
必应学术
必应学术中相似的文章
[Xu, Jingwen]的文章
[Zhao, Junfang]的文章
[Zhang, Wanchang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。