Arid
Performance Evaluation of LLR, SVM, CGNN and BFGSNN Models to Evaporation Estimation
Moghaddamnia, Alireza1; Gosheh, Mohsen Ghafari1; Nuraie, Mehrdad2; Mansuri, Mohammad Alizadeh2; Han, Dawei3
通讯作者Moghaddamnia, Alireza
会议名称5th IASME/WSEAS International Conference on Water Resources, Hydraulics and Hydrology/4th IASME/WSEAS International Conference on Geology and Seismology
会议日期FEB 23-25, 2010
会议地点Cambridge, ENGLAND
英文摘要

This study assessed the ability of three models of Local Linear Regression (LLR), Support Vector Machine (SVM) and Artificial Neural Network (ANN) to estimate evaporation from reservoirs as one of the critical components of hydrological cycle in arid and semi-arid regions. A case study has been carried out in the Chahnimeh water reservoirs of Zabol located in the Sistan plain of Iran. Among the models used, in terms of the evaluation criteria of root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R-2), it is demonstrated that use of the nonlinear models of support vector machine (SVM), Broyden-Fletcher-Goldfarb-Shanno neural network (BFGSNN) and Conjugate Gradient neural network (CGNN) performed reasonably well in modeling the validation data compared to Local Linear Regression (LLR) model but both BFGSNN and CGNN failed to reach the highest possible values. In the meantime, the SVM model was able to provide more reliable estimations compared to others.


英文关键词Evaporation SVM ANN LLR modeling Chahnimeh reservoirs of Zabol
来源出版物PROCEEDINGS OF THE 5TH IASME/WSEAS INT CONF ON WATER RESOURCES, HYDRAULICS & HYDROLOGY/PROCEEDINGS OF THE 4TH IASME/WSEAS INT CONF ON GEOLOGY AND SEISMOLOGY
出版年2010
页码108-+
ISBN978-960-474-160-1
出版者WORLD SCIENTIFIC AND ENGINEERING ACAD AND SOC
类型Proceedings Paper
语种英语
国家Iran;England
收录类别CPCI-S
WOS记录号WOS:000276778500015
WOS关键词ARTIFICIAL NEURAL-NETWORK ; SUPPORT VECTOR MACHINES ; FREE-WATER EVAPORATION ; PAN EVAPORATION ; EQUATIONS ; CLIMATE ; LAKE
WOS类目Energy & Fuels ; Engineering, Environmental ; Geology
WOS研究方向Energy & Fuels ; Engineering ; Geology
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/298407
作者单位1.Univ Zabol, Dept Range & Watershed Management, Zabol, Iran;
2.Islamic Azad Univ, Dept Civil Engn, Tehran, Iran;
3.Univ Bristol, Fac Engn, Bristol BS8 1TH, Avon, England
推荐引用方式
GB/T 7714
Moghaddamnia, Alireza,Gosheh, Mohsen Ghafari,Nuraie, Mehrdad,et al. Performance Evaluation of LLR, SVM, CGNN and BFGSNN Models to Evaporation Estimation[C]:WORLD SCIENTIFIC AND ENGINEERING ACAD AND SOC,2010:108-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Moghaddamnia, Alireza]的文章
[Gosheh, Mohsen Ghafari]的文章
[Nuraie, Mehrdad]的文章
百度学术
百度学术中相似的文章
[Moghaddamnia, Alireza]的文章
[Gosheh, Mohsen Ghafari]的文章
[Nuraie, Mehrdad]的文章
必应学术
必应学术中相似的文章
[Moghaddamnia, Alireza]的文章
[Gosheh, Mohsen Ghafari]的文章
[Nuraie, Mehrdad]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。