Arid
DOI10.1117/12.683219
Robustness tests for object identification algorithms in hyperspectral imagery
Mayer, R.; Antoniades, J.; Baumback, M.; Chester, D.; Edwards, J.; Goldstein, A.; Haas, D.; Henderson, S.
通讯作者Mayer, R.
会议名称Conference on Imaging Spectrometry XI
会议日期AUG 14-16, 2006
会议地点San Diego, CA
英文摘要

A previous study adapted a variety of techniques derived from multi-spectral image classification to find objects amid cluttered backgrounds in hyperspectral imagery. That study quantitatively compared the adapted algorithms against a standard object search, the matched filter (MF) and a recently developed object detector, Adaptive Cosine Estimator (ACE) and found substantial reduction in false alarm rates for a given target detection probability. One adapted object search, Regularized Maximum Likelihood Classifier (RMLC), requires calculating the covariance matrix involving the average object spectral signature and the target pixels. The object covariance matrix requires a relatively large number of pixels to generate a non-singular, accurate covariance matrix. This study examines the robustness of the RMLC algorithm on number of training pixels, the optimal mixing covariance matrices, and choice of object subspaces for the ACE algorithm. The tests were applied to visible/near IR data collected from forest and desert environments. This study finds that high detection performance standards for RMLC are invariant for pixel number for homogenous targets, down to two pixels. Regularization is relatively unaffected by the choice of areas to optimize the object covariance matrix although targets that mix background appear to be more sensitive to choice of covariance matrix. Reducing the object subspace dimensions by using the average target signature or choosing the first principle component enhances ACE performance relative to using the entire object space.


英文关键词target detection object identification hyperspectral imagery matched filters
来源出版物IMAGING SPECTROMETRY XI
ISSN0277-786X
EISSN1996-756X
出版年2006
卷号6302
ISBN0-8194-6381-7
出版者SPIE-INT SOC OPTICAL ENGINEERING
类型Proceedings Paper
语种英语
国家USA
收录类别CPCI-S
WOS记录号WOS:000241945400025
WOS类目Imaging Science & Photographic Technology ; Spectroscopy
WOS研究方向Imaging Science & Photographic Technology ; Spectroscopy
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/295975
作者单位BAE Syst ATI, Washington, DC 20037 USA
推荐引用方式
GB/T 7714
Mayer, R.,Antoniades, J.,Baumback, M.,et al. Robustness tests for object identification algorithms in hyperspectral imagery[C]:SPIE-INT SOC OPTICAL ENGINEERING,2006.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mayer, R.]的文章
[Antoniades, J.]的文章
[Baumback, M.]的文章
百度学术
百度学术中相似的文章
[Mayer, R.]的文章
[Antoniades, J.]的文章
[Baumback, M.]的文章
必应学术
必应学术中相似的文章
[Mayer, R.]的文章
[Antoniades, J.]的文章
[Baumback, M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。