Knowledge Resource Center for Ecological Environment in Arid Area
中国北方春夏大气长波及其对降水影响的研究 | |
其他题名 | Atmospheric long wave and its influences on precipitation in spring and summer in Northern China |
魏红 | |
出版年 | 2016 |
学位类型 | 硕士 |
导师 | 陈国雄 |
学位授予单位 | 中国科学院大学 |
中文摘要 | 大气长波是气象学中最重要的一种波动。在中高纬度地区,大气长波的水平尺度可大到同地球半径相比拟,故亦称为行星波(或称为罗斯贝波)。一般来说,大气长波槽前对应着大范围的辐合上升运动和云雨天气区,槽后脊前对应着大范围辐散下沉运动和晴朗天气区。各地区长波的活动存在着年际和年代的变化,长波变化常导致一般天气系统及天气过程发生明显变化,从而引起气候状况的改变。中国北方地区(30°N~55°N,70°E~140°E)位于北半球中纬度,东西跨度比较大,东邻渤海、黄海和日本海,并与朝鲜接壤,其西方、北方、南方均与大陆相连。地形复杂多样,有沙漠、戈壁、草原、高原和平原地貌等,横跨该地区的大气长波发生着变化。本文利用1958~2014年3~8月逐日NCEP/NCAR再分析资料和同期中国北方地区的降水资料,对位势高度沿整个地球纬圈进行谐波分析,关于超长波(1-3波)的研究成果已经很多,本论文合成4~6波作为大气长波部分,分析了大气长波的基本特征;通过经验正交函数分解(Empirical Orthogonal Function,EOF)、奇异值分解(Singular Value Decomposition,SVD)、合成分析(Composite Analysis,CA)等多种统计分析方法,分析了大气长波与中国北方降水的相关关系,并解释大气长波影响中国北方降水的机理。具体结论如下:(1)中国北方春夏季不同尺度大气长波的变化特征及比较各尺度的分布情况。为了得到大气长波在气候学意义上的统计特征,本研究比较了不同时间尺度的长波分布情况,结果发现春季和夏季500hPa长波场在季节尺度、月尺度、日尺度、候尺度和旬尺度的空间分布体现了较高的一致性。春季长波的主要分布类型其中心位置在日、候、旬、月尺度上依次向西偏移,月尺度到季节尺度的中心位置几乎不变,季节尺度上在亚洲北部地区从咸海到日本为一个完整的长波,巴尔喀什湖到我国罗布泊地区以长波脊活动为主,长波脊的强度呈增强趋势,我国东北地区以长波槽活动为主,长波槽的强度也呈增强趋势。夏季,候尺度与日尺度分布高度相似,槽中心和脊中心的位置几乎不变;候尺度到旬尺度,槽中心和脊中心略向东移;旬尺度、月尺度和季节尺度长波场的分布非常相似,槽中心和脊中心的位置几乎不变。季节尺度上,蒙古国到我国华北地区以长波槽活动为主,但存在长波槽减弱趋势。(2)大气长波的能量随时间变化的特点及研究长波的重要性。在地球大气层,高空气流可以分解成基本气流、超长波、长波和短波,长波在天气、气候变化中具有重要的作用。春季和夏季1~12波单位质量能量依次减小,各波之间的能量是此消彼长的。长波的重要性足以与超长波比拟,春季超长波(1~3波)占总扰动能量的45.0%,长波(4~6波)占30.7%;夏季超长波占总扰动能量的40.0%,长波占30.8%。(3)中国北方地区区域长波指数特征及各指数之间的相关关系。本研究定义的各种长波指数从不同的角度反映了长波的变化情况。分析春季各指数之间的相关关系、夏季各指数之间的相关关系、春季各指数与夏季各指数之间的相关关系,结论是春季和夏季的EOF指数、长波极值指数均能有效地表征大气长波变化。另外,春季长波极值指数与夏季长波活跃性指数存在比较弱的正相关关系。(4)春夏季大气长波与中国北方降水的相关关系。春季大气长波与同期中国北方降水的相关性比较好。春季长波大致以110°E为界,在我国西部地区为长波槽(脊)、东北地区及朝鲜半岛为长波脊(槽)分布时,我国北方大部分地区春季降水偏多(少),青海南部和东北地区降水偏少(多),其中河套地区降水显著偏多(少)。夏季大气长波与同期降水的相关性比较弱。西北地区由以长波槽为主逐渐转变为长波脊为主,日本海由以长波脊为主转变为以长波槽为主,西部降水由偏少逐渐转变为偏多,东部降水由偏多转变为偏少。春季大气长波与夏季降水弱相关。春季长波在哈萨克斯坦西部、我国新疆及以北地区、大兴安岭以东地区分别为长波槽(脊)、脊(槽)、槽(脊)分布时,天山以北、塔里木盆地南部和东北地区夏季降水偏多(少),我国北方其他地区降水偏少(多)。 (5)春夏季大气长波影响中国北方降水的机理。我国北方地区降水对大气长波的响应过程,由对流层上、下层散度场、垂直速度场、中低层水汽输送通量和水汽输送通量散度等环流因素共同完成。 |
英文摘要 | The atmospheric long wave plays an important role in meteorology. In the middle and high latitudes, the horizontal scale of the atmospheric long wave is as large as that of the earth's radius, and it is also called planetary wave (or Rossby wave). In general, the front of atmospheric long wave trough corresponds a wide range of convergence region and updraft and cloud and rainfall event, and the groove corresponds a divergence downdraft and sunny weather area. Long wave abnormity often leads to significant variations in the general weather system and the weather process. The Northern China (30°N-55°N, 70°E-140°E) is located in the mid latitudes of the northern hemisphere. This paper research onrelationships between long wave and precipitation & atmospheric circulation in Northern China, and explained the effect mechanism of long wave on precipitation in Northern China by using the National Center for Environmental Prediction/National Center for Atmosphere Research (NCEP/NCAR) Reanalysis daily datasets during 1958-2014 and the same period precipitation data in Northern China during March to Augustby using the the Empirical Orthogonal Function (EOF), Singular Value Decomposition(SVD) and Composite Analysis(CA)methods. The results are presented as following:(1) Analyze the distribution of the long wave at differenthorizontal scale in Northern China in spring and summer, the inter-comparisons among these distribution were conducted. This paper inter-compared the different time scales of the long wave to obtain the climatologically statistical characteristics of the long wave. The Seasonal long wave had the similar distribution characteristics with the Day, Hou, Dekad and monthly long wave. For the temporal variation, the seasonal long wave was potential to prominent the main distribution pattern of the ridge and trough.(2) Time-varying characteristics of the long wave energy and the importance of the long wave. The upper air flow was decomposed into the basic air flow, ultra-long wave, long wave and short wave, and the long wave has an important role in the weather and climate change. In spring and summer, the unit of mass energy of wave 1 was the strongest, followed by the wave 2, 3, to 12, andthe wave energy was shift. The long wave is as importantas the ultra-long wave, in the spring, the ultra-long wave occupies 45.0% of the total disturbance energy, the longwave occupies 30.7%; in the summer, ultra-long wave occupies 40.0% of the total disturbance energy, the long wave occupies 30.8%. (3) The characteristic of the long wave index in Northern China and the correlation between the indexes in the spring and summer. The long wave index defined in this paper reflected the changes of long wave from different angles. Analysing the correlation between the indexes in spring, and in summer, and the correlation between the indexes in the spring and summer, the conclusion was that the EOF index and the Long wave Extreme Value (LEV)index of spring and summer characterized the long wave changes effectively. In addition, there was a weak positive correlation between the springlongwaveextreme index and the summer long wave activity index.(4) The relationship between long wave and precipitation in spring and summer. The domain is divided along 110°E longitude, the precipitation increases(decreases) in most of northern China in this investigation, and the precipitation was more than that in the western part of northwest China was controlled by long wave trough (ridge), there were long wave ridge (trough) and long wave trough(ridge) respectively in the Northeast China, and Korean peninsula in spring. In summer, the northwest China was dominated by the long wave trough, and gradually shifted to the long wave ridge from 1958 to 2014. The Sea of Japan was dominated by the long wave ridge, which was shifted to the long wave trough, and the precipitation was gradually shifted from negative anomaly to positive anomaly, and the precipitation of the eastern part shifted from the positive anomaly to the negative anomaly. There were long wave trough(ridge) ridge(trough) and long wave trough(ridge) respectively in Kazakhstan, Xingjiang and the north of that and the east of Great Khingan, the precipitation increased (decreased) in the north of the Tianshan Mountains and the Northest China, decreases(increases) in the south of the Tarim Basin. (5) The effect mechanism of long wave on precipitation in Northern China. The response of precipitation in Northern China to atmospheric long wave is caused by the changes of divergence-convergence over East-Asian at 200hPa and 850hPa, vertical velocity from lower to upper troposphere, water vapor transport fluxes and water vapor transport fluxes divergence-convergence. |
中文关键词 | 中国北方地区 ; 降水 ; 大气长波 ; 大气环流 |
英文关键词 | Northern China precipitation atmospheric long wave atmospheric circulation |
语种 | 中文 |
国家 | 中国 |
来源学科分类 | 气象学 |
来源机构 | 中国科学院西北生态环境资源研究院 |
资源类型 | 学位论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/287714 |
推荐引用方式 GB/T 7714 | 魏红. 中国北方春夏大气长波及其对降水影响的研究[D]. 中国科学院大学,2016. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[魏红]的文章 |
百度学术 |
百度学术中相似的文章 |
[魏红]的文章 |
必应学术 |
必应学术中相似的文章 |
[魏红]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。