Knowledge Resource Center for Ecological Environment in Arid Area
羌塘高原自然地理特征与寒旱核心区范围探讨 | |
其他题名 | Analyzing the physical geography characteristics of Qiangtang Plateau and identifying the boundary of the cold and dry core region of Qiangtang Plateau |
祁威 | |
出版年 | 2015 |
学位类型 | 博士 |
导师 | 张镱锂 |
学位授予单位 | 中国科学院大学 |
中文摘要 | 青藏高原因强烈隆升,导致大气环流发生变化,形成了高原区域性环流。受此影响,从喀喇昆仑山最干旱的中段北翼的河尾滩、阿克赛钦一带向东延伸至中昆仑山南翼的黑石北湖、羊湖、白戈壁和昂歌库勒,及其以东的干旱区域,远离青藏高原两条水汽输送路径,气候寒冷干旱,成为亚洲的寒旱核心区域。据已有资料,寒旱核心区海拔在4700~5200m间,最暖月均温3~6℃,年降水量约为20~40mm。 本文在大量野外工作的基础上,基于改则及日土县境内19套土壤温度监测站点及3台自动气象站点1cm、10cm及20cm深度处土壤温度数据,分析了不同深度处土壤温度的季节变化和日变化;利用MODIS LST产品结合站点地表温度数据建立线性回归模型,反演了羌塘高原区域地表温度;通过布设在藏北高原的16套仪器构建土壤湿度监测网络,分析了5cm、15cm、25cm深度处的土壤湿度状况;通过引入温度植被干旱指数(TVDI),利用MODIS产品建立LST-NDVI特征空间,并按照TVDI的值域将土壤干湿状况划分为湿润、偏湿、正常、偏旱和干旱5级,获得了2014年7月的土壤水分空间格局;利用IQ150土壤原位pH/mV/温度计速测仪测量的土壤pH值,结合MODIS遥感数据,分析了羌塘高原土壤酸碱度的现状,并探讨了土壤pH与植被的联系;基于野外调查获得的覆被类型定位信息,以及植被调查数据,并利用面向对象的分类方法,构建光谱、高程、植被生长曲线(物候)、植物生长特性等信息,确定了羌塘高原土地覆被分类现状;在此基础上,确定寒旱核心区的选取原则与划分指标,提出了寒旱核心区的范围及其自然地理特点。主要研究结论如下: 一、羌塘高原的主要自然地理特征: (1) 土壤温度:2013年10月至2014年9月土壤温度呈现近似正弦曲线式的周期性变化,在-16.27~17.18℃范围内波动,且随着土壤深度的增加,土壤温度的变幅逐渐减少,最高值出现在7/8月份,最低值出现在1月份,站点间的日均温差低于12.82℃,站点之间的差异主要依海拔和纬度而变化。在昼夜变化中,土壤温度也呈现正(余)弦似的变化,并且随着土壤深度的增加,变化幅度也在逐渐减小。在土壤冻结/消融过程中土壤温度变异系数很高,且消融过程变异性比冻结过程更强。此外,土壤日平均温度与延迟1小时的气温有很强的相关性。 羌塘高原地表温度的空间格局显示:地表温度受纬度分布影响,自西南向东北方西逐渐递减,并带有明显的地形烙印。研究区的月平均最高地表温度在-1.02~23.63℃间波动。 (2) 土壤湿度:非冻融期间区域内土壤湿度的季节变化较大,站点间差异明显,受降水等短时天气影响很大,表层土壤(5cm处)湿度在0.04~0.25m3/m3间波动。土壤开始冻结/消融时,土壤湿度出现陡降/陡升,期间土壤湿度变化曲线相对稳定,大部分土壤水分处于冻结稳定状态,表层土壤湿度较为稳定,在0~0.035m3/m3间波动。随着土壤深度增加,土壤湿度的变幅均在逐渐减少。从土壤湿度日变化看,5cm深度处的土壤湿度变化较明显,15cm深处也有一定的日变化但已经非常小,25cm深处含水量基本无变化。且土壤处于冻结/消融期间,同一深度处的土壤湿度振幅明显增大。该区域的整体土壤含水量相对于羌塘高原东部都比较低,且日土县域内站点比改则县域内站点低。此外,对比不同植被的土壤湿度数据发现,紫花针茅、羽柱针茅及固沙草的监测站点不同深度处的土壤水分变化规律一致,垫状驼绒藜的监测站点则与前三者不同,随着土壤深度增加,土壤水分也逐渐增加。 遥感反演的区域土壤干湿状况存在着明显的空间分异特征,总体上从东到西,从南到北的土壤湿度逐渐降低,并受局部地形地貌的影响。偏湿(及湿润)区域约为27.83%,正常的区域约为26.13%,偏干(及干旱)区域约占38.80%。 (3) 土壤pH:羌塘高原土壤pH整体上呈碱性,约69.4%的土壤pH在7.5~10之间波动,空间上呈现南低北高的趋势,土壤pH较高的区域主要分布于可可西里地区、改则县中北部以及日土县东部地区。青藏薹草、垫状驼绒藜、紫花针茅、羽柱针茅等植被对土壤pH的适应度都很强,在研究区内分布较为广泛,其中属于旱生植被的垫状驼绒藜,其耐盐性最强。耐盐碱性略差的沙生针茅及固沙草则分布范围略窄,多分布于羌塘高原中南部地区。 (4) 土地覆被格局:羌塘高原紫花针茅草原、青藏薹草草原、小嵩草草甸和垫状驼绒藜荒漠所占比重较高,其中青藏薹草草原与紫花针茅草原相称,主要集中于羌塘高原的中部。垫状驼绒藜荒漠比较集中于羌塘高原的西北部,小嵩草草甸、藏北嵩草草甸与垫状驼绒藜荒漠相反,主要出现在高原南部区域。 二、羌塘高原寒旱核心区的范围及其自然地理特点: 以1月平均地表温度小于-14℃,7月平均地表温度小于13℃,且温度植被干旱指数(TVDI)大于0.6为指标,对划定的羌塘高原寒旱核心区主要认识有: 羌塘高原寒旱核心区范围为34°19′23″ N~36°11′29″ N,83°0′43″ E~86°55′43″ E,面积为26244.30 km2。以羊湖为中心,北边以中昆仑山脉为界,与羌塘高原北界重合,从西北部的碱水湖到东南部的淡水湖(青蛙湖)和石榴湖,从西南部的心湖和图中湖到东北部的涌波错成“X”形分布。 区域海拔在4773~5634m间,最暖月平均地表温度在5.70~16.41℃间,最冷月平均地表温度最高可达-11.49℃,7月的土壤水分低于0.2m3/m3,平均土壤pH值为9.09,最高可达12.61,土地覆被以垫状驼绒藜荒漠景观为主,此外还有部分紫花针茅草原、羽柱针茅草原、青藏苔草草原以及高山稀疏植被在区内分布。 该研究将为青藏高原基础理论研究提供可靠资料。并为区域资源开发利用、生物多样性保护以及区域可持续发展战略的制定提供科学依据。 |
英文摘要 | Affected by Himalayan orogeny, the average elevation of Tibetan Plateau has been above 4000 m with enormous crust up thrust, as the result, the condition of the atmospheric circulation has been changed to form a regional circulation within the range of Tibetan plateau. Thus, the Asia cold and dry core region(CDCR) came into shape under the cold and arid climate as the dry regions from Heweitan, Akesaiqin in the north-side of central Karakorum mountains to the east of Heishibeihu, Yanghu, Baigebi, Agekule in the south-side of central Karakorum mountains were far apart from the two vapor transport paths on the Tibetan plateau. Based on the existing data, the elevation of study area is about 4700~5200m, the average temperature of the most warm month is about 3~6 ℃, annual precipitation is about 20~40mm. Based on the meteorological station data, high resolution remote sensing data and field observation data, this paper analyzes the environment characteristics by land surface temperature(LST), soil moisture, soil pH and land cover pattern. Then these data are used to identify the boundary of the cold and dry core region of Qiangtang Plateau (QTP). A series of achievement have been made: 1.The physical geography characteristics of Qiangtang Plateau (1) 19 soil temperature station and 3 automatic weather station in Gaize and Ritu county, Tibet, has been established to measure soil temperature at three soil depths(1, 10, 20 cm) with their elevation varying over 4515-5172 m. The station-averaged soil temperature data at hourly to monthly scale are used to analyses the characteristics of soil temperature and thaw-freezing processes. Major finding are as follow: (a) For all three temperature layer, the daily-mean soil temperature show obvious seasonal variations, which is strongly correlated with that of air temperature, while the soil temperature varied in a more slowly amplitude with the depth increase. The annual range of daily-mean temperature is about 30℃ and the spatial variability is less than 12.82℃. (b) The soil temperature got strong coefficient of variation(CV) values during the thaw phase and freezing phase, indicting the effect of freezing-thawing processes on temperature that during the water phase change releases a great deal of energy. While the soil temperature got weak CV values during January/ July, in which the monthly-mean temperature values is the minimum/ maximum. (c) At the hourly scale, the soil temperature varied in sine waves style, with the waves smoothed and delayed gradually for the increase of depth. (d) The temperature gads change more early than season transfer. (e) The difference of 22 station may have relationship with elevation and latitude。 Besides, a total of 21 stations and 46 MODIS images for the period from October, 2013 to September, 2014 are used for analysis. The linear regression model was made between the MODIS LST products and 1 cm depth of soil temperature. This model can be used to accurately estimate spatial pattern of monthly mean LST in QTP (R2 ranging from 0.70 to 0.89): the distribution of LST affected by latitudinal and terrain changes, gradually decreased from the southwest to the northeast. (2) 16 soil moisture station in Gaize and Ritu county, Tibet, has been established to measure soil moisture at three soil depths (5, 15, 25 cm). During the non-freezing phase, the soil moisture of 16 stations has significant differences. Affect by the rainfall, the soil moisture has obviously seasonal changes, range from 0.04 m3/m3 to 0.25 m3/m3. When the freezing phase or the thaw phase starts, the soil moisture will present a sharp drop or rise, while during the freezing phase, the soil moisture is relatively stable. At hourly scale, the soil moisture varied in a more slowly amplitude with the depth increase. Analyzed the soil moisture by station vegetation types, the results showed that: the trends of soil moisture in Stipa purpurea, S. subsessiliflora var. basiplumosa, Orinus thoroldi |
中文关键词 | 寒旱核心区 ; 土壤温度 ; 土壤湿度 ; 土壤酸碱度 ; 地域特征 |
英文关键词 | the cold and dry core region soil temperature soil moisture soil salinization environment regional characteristic |
语种 | 中文 |
国家 | 中国 |
来源学科分类 | 自然地理学 |
来源机构 | 中国科学院地理科学与资源研究所 |
资源类型 | 学位论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/287483 |
推荐引用方式 GB/T 7714 | 祁威. 羌塘高原自然地理特征与寒旱核心区范围探讨[D]. 中国科学院大学,2015. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[祁威]的文章 |
百度学术 |
百度学术中相似的文章 |
[祁威]的文章 |
必应学术 |
必应学术中相似的文章 |
[祁威]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。