Knowledge Resource Center for Ecological Environment in Arid Area
中国旱区降雨和风蚀气候侵蚀力的变化趋势及其对气候变化的响应 | |
其他题名 | Trends of Rainfall and Wind Climatic Erosivity and the Response to Climate Change in China’s Dryland Region |
杨逢渤 | |
出版年 | 2015 |
学位类型 | 博士 |
导师 | 吕昌河 |
学位授予单位 | 中国科学院大学 |
中文摘要 | 土壤侵蚀是世界上众多国家和地区的主要环境问题之一,导致土壤生产力和环境调节能力下降。作为土壤侵蚀的主要诱因,降雨和风引起的土壤侵蚀对于农业生产、土地利用管理和生态环境保护意义重大。在全球变化的背景下,气候变化敏感区域的降雨和风蚀气候侵蚀力的变化受到了广泛关注。本文选取中国旱区(主要范围是年降水量低于600 mm的干旱、半干旱和半湿润偏干区)作为研究对象,以土壤水蚀和风蚀对气候变化的响应为研究主线,对1961-2012年我国旱区降雨和风蚀气候侵蚀力的趋势变化和空间特征进行了定量分析,并基于27个CMIP5气候模式(Feng and Fu, 2013)和特定排放路径(RCP8.5和4.5)对2011-2060年的气候变化的预测数据,对区域未来降雨和风蚀气候侵蚀力进行预估。通过研究,主要得出以下结论: (1)1961-2012年,区域降雨侵蚀力的多年平均值在2 - 4098 MJ mm ha-1 h-1 a-1之间,年变异系数(CV)32.4% - 491.3%,其空间分布与年降雨量特别是侵蚀性降雨的空间变化一致,即降雨侵蚀力由东南向西北递减,但年际变率递增。1961-2012年,区域年降雨侵蚀力为511-1200 MJ mm ha-1 h-1,多年均值为794 MJ mm ha-1 h-1。降雨侵蚀力呈现显著的季节性分布,全年约3/4的降雨侵蚀力分布在夏季。从变化趋势来看,全区有24(10)个站点的年降雨侵蚀力表现出明显的上升或下降趋势(|Z|>1.645);有32(45)个站点(占研究区面积的26.5%)置信区间在50-90%(σ= 0.1-0.5),表现为不显著的上升或下降趋势;其余126个站点(占研究区面积的68.5%)基本没有趋势变化(|Z|<0.645)。在较为干旱的西部地区,年降雨侵蚀力的统计变量Z值大多为正(有增加倾向),而东部湿润地区Z值多为负数(降低倾向),侵蚀力变化趋势的区域差异较明显。与1961-1986年的多年平均值相比,1987-2012年干旱区年降雨侵蚀力平均值上升了17.4%,亚湿润区则下降了6.1%,半干旱区下降仅0.45%,整个研究区下降了3.6%。上述结果表明,在过去半个世纪,降雨特征的变化对于研究区大部分地区的水蚀并没有显著的影响,但可能引起西部干燥区部分区域水蚀侵蚀风险增加,东部湿润区部分区域侵蚀风险略微减小。 (2)1961-2012年,区域风蚀气候因子指数(C值)的多年平均值在2-471之间,空间分布差异明显。1961-2012年,旱区风蚀气候因子指数在22.70-58.06之间,年际变异系数(CV)介于3.22%-66.91%之间。C值年内分配集中度为0.29,且有逐年降低的趋势(Z = -1.85),集中期为3.49,且有向后延迟的趋势(Z = 3.29),平均每年推后约0.014个月。旱区风蚀气候因子指数的下降趋势在0.001水平上显著(Z = -6.65),其中89.10%(其中显著下降的占83.42%)的面积呈显著下降,而上升倾向的区域只占总面积的10.90%,集中分布在黄土高原的西部、青藏高原的南部以及内蒙古高原的西部地区。区域C值年均降低0.523 m/s,年变化率为1.39%;青藏高原南部以及天山山脉以北地区,C值下降速度最显著,年均降低超过2.5%,但在甘肃南部的部分区域,C值呈现上升趋势。在年尺度上,风速是区域风蚀气候侵蚀力最为敏感的因子(3.09);其次是干湿状况(-0.26)和相对湿度(-0.18)。在月时间尺度上,在3-10月,降水是仅次于风速的最敏感因素,而11月到次年1月,其对相对湿度的敏感性超过了对降水因子的敏感性。52年间,区域C值减少52.0%,风速减少24.4%,对C 值减少的贡献为58.2%;日照时数减少6.3%导致 C 值减少0.3%;最高和最低温度分别增加8.7%和85.7%导致C 值分别增加0.8%和4.6%;相对湿度和降水量减少2.9%和2.2%使C 值分别增加了0.5%和0.6%。由此可见,风速是影响C 值变化的决定性因素,温度上升对C 值下降趋势有所减缓。 (3)RCP8.5(RCP4.5)情景下,2011-2060年旱区多模式集合的多年平均降水量为334(331)mm。未来中国旱区年降水量总体呈现上升趋势(Z=7.33和7.36),年变化量为0.639和0.603 mm。相较于过去50年来(1961-2010)平均降水量的水平,气候模式预估的未来50年(2011-2060)的降水量在大部分区域都相对偏高。2011-2060年,多模式集合对未来50年降雨侵蚀力也呈现极为显著的上升趋势,年变化量为2.49和2.85 MJ mm ha-1 h-1;从气候平均态来看,2011-2060年降雨侵蚀力仍然保持着自东南向西北递减的趋势,西北干旱区域均值较1961-2010年有所上升,但在东部较湿润地区包括黄土高原地区,以及新疆南部、青藏高原北部区域)表现为下降。 1961-2005年,模式(集合)能够在一定程度上模拟出中国旱区降水量的空间分布特征和变化趋势,但对于区域降水量的年际波动特别是峰值的表达,效果相对较差,且与观测值的同步性相对较低。大多数地区模拟的多年平均降水量高于观测值;多模式集合平均的月平均降水量与观测值的相对偏差(MRE)为5.8%。 (4)2011-2060年,RCP8.5和4.5情景下,中国旱区多模式集合的潜在蒸散量为549-1566(540-1555)mm/a,平均值为1077±150(1067±150 mm/a)mm/a;模式集合的风速为0.89-3.10(0.88-3.10)m/s,平均值为1.91±0.43(1.92±0.43)m/s。2011-2060年,在RCP8.5和4.5情景下,预估的风蚀气候侵蚀力变化趋势差异较大,但多年平均值的空间分布差异较小。RCP8.5情景下,2011-2060年中国旱区风蚀气候侵蚀力为下降趋势(Z=-3.77),年减少量为0.07;RCP4.5情景下,风蚀气候侵蚀力呈现增加趋势(Z=3.73),年增加量为0.04。比较1961-2010年和2011-2060年这两个时段,可以发现这100年间,我国旱区的风蚀气候侵蚀力总体呈现下降趋势,未来50年的平均值仅比过去50年低11.4,即下降27.8%。 1961-2005年,模型集合平均年潜在蒸散量在508-1514 mm之间,区域平均值为1030±153 mm/a;与观测值相比(963±158 mm/a),模式模拟的结果要相对偏高(4.8%),观测值与预测值的空间相关性相对较好(R2=0.35)。模式(集合)能够在一定程度上能够模拟出旱区地表风速的时空分布特征(-0.08±0.36 m/s),观测值与预测值的空间高度相关(R2=0.57),年均风速大约低估了4.9%。1961-2005年,观测值计算的潜在蒸散量有着较为明显的下降趋势(Z=-2.49),年减少量1.1 mm/a,模式模拟出的潜在蒸散量呈现明显上升趋势(Z>1.645)。 |
英文摘要 | As one of the main environmental problems in the world, soil erosion could reduce soil fertility and crop yield, and weaken the ability of environmental regulation. Rainfall and wind are the main cause of the soil erosion, which has a dramatic impact on the agriculture production and life, land use management and ecological protection. Rainfall and wind climatic erosion in the sensitive area responding to climate change attracts broad attention all over the world under the background of the global climate change. In this study, we take China’s dryland as the study area, select the response of rainfall and wind climatic erosion to climate change as the main line and analyze the changing trend and spatial distribution of precipitation and wind and the climatic erosion. Furthermore, we estimate the regional rainfall and wind climatic erosion from 2011 to 2060 based on the 27 CMIP5 climate models (Feng and Fu, 2013) and specific discharge path (RCP8.5 and 4.5). The main conclusions are as follows: (1) The long-term average and year-to-year variation (CV) of annual erosivity varied greatly from 2 to 4098 MJ mm ha-1 h-1 a-1 and from 32.4 to 491.3% across China’s dryland region, increased and decreased obviously from west to east. This spatial distribution was in accordance with the spatial change of annual rainfall particularly erosive rainfall. The mean annual erosivity for the whole region was 511-1200 MJ mm ha-1 h-1 during 1961-2012, averaged 794 MJ mm ha-1 h-1 a-1. Rainfall erosivity had a distinct seasonal variation with about three-quarter of the annual total distributed in summer season. During 1961-2012, total 34 stations were detected a significant trend in annual erosivity at the 0.1 significance level, comprising 10 stations with a downward trend and 24 stations with an upward trend. A total of 77 stations representing 26.5% of the study area demonstrated a non-significant trend in annual erosivity, and more than half stations with an area of 68.5% was not found a presence of trends at the confidence level of above 50%. In the drier west part, the annual erosivity mostly showed a positive Z value, while in the wetter east part, generally a negative value, indicating a distinct regional difference in the trend occurrence. The mean annual erosivity of the arid zone showed a significant decrease trend, the sub-humid zone a non-significant decrease trend, and the semi-arid zone generally no trend. The mean erosivity during 1987-2012 increased by 17.4% for the arid zone, and decreased by 6.1% for the sub-humid zone, 0.45% for the semi-arid zone, and 3.6% for the whole region, compared with the values during 1961-1986. These results suggest that change in rainfall characteristic during past half century had no significant influence on water erosion in the majority of the region, but could probably induce an increase in the risk of water erosion in parts of the drier west and a slight decrease in parts of the wetter east. (2) The annual average value of wind erosion climatic erosivity was between 2-471 in China’s dryland region during 1961-2012. Wind erosion climatic erosivity had a relatively large inter-annual variation between 22.70-58.06 during the period between 1961-2012, and the coefficient of variation (CV) was 13.7%-108.9% across the region. The variation of intra-annual erosivity was not so obvious determined by the concentration degree (0.29), which decreased significantly at the 0.1 significance level (Z=-1.85). The concentration period was 3.49, and had an apparent declining trend (Z=3.29) with 0.5 days per year. The erosivity decreased significantly at 0.001significance level (Z=-6.65) during 1961-2012. The area of declining trend was large, occupying 89.1% of the total region (significant decrease 83.42%), while the area of inclining trend occupied only 10.90% of the region, located in the west of the Loess Plateau, south of the Tibet Plateau and west of the Inner Mongolia. The annual erosivity was estimated to |
中文关键词 | 降雨侵蚀力 ; 风蚀气候侵蚀力 ; 旱区 ; CMIP5 |
英文关键词 | rainfall erosivity wind climatic erosion dryland CMIP5 |
语种 | 中文 |
国家 | 中国 |
来源学科分类 | 自然地理学 |
来源机构 | 中国科学院地理科学与资源研究所 |
资源类型 | 学位论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/287482 |
推荐引用方式 GB/T 7714 | 杨逢渤. 中国旱区降雨和风蚀气候侵蚀力的变化趋势及其对气候变化的响应[D]. 中国科学院大学,2015. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[杨逢渤]的文章 |
百度学术 |
百度学术中相似的文章 |
[杨逢渤]的文章 |
必应学术 |
必应学术中相似的文章 |
[杨逢渤]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。