Arid
青藏高原氮湿沉降现状及典型放牧草原对氮施肥的响应
其他题名Nitrogen wet deposition on the Tibetan Plateau and typical grazing steppe responses to nitrogen fertilization
刘永稳
出版年2014
学位类型博士
导师罗天祥
学位授予单位中国科学院大学
中文摘要青藏高原地域广袤,广泛分布有高寒草地生态系统。自20世纪中叶以来,青藏高原高寒草地放牧压力持续提高;同时,青藏高原活性氮湿沉降也呈持续增加趋势。高寒生态系统对氮沉降增加敏感,但是,青藏高原氮湿沉降现状及活性氮输入增加对放牧草地的影响仍不明确。为了深入理解青藏高原放牧草地对活性氮沉降增加的响应,本研究开展了以下三方面的工作:首先,观测青藏高原典型区氮湿沉降,并结合文献记录数据,评估青藏高原氮湿沉降量及其空间分布格局;其次,探讨当前氮沉降背景条件下,青藏高原三种典型放牧草地(草原、草甸和沼泽草甸)和草原围栏内外的植物、土壤养分和碳交换现状;最后,在典型放牧草原实施多水平氮施肥试验,研究高寒草原生态系统结构、功能和碳交换对模拟活性氮输入增加的响应。 (1)依托青藏高原研究平台的5个野外台站(中国科学院藏东南高山环境综合观测研究站[藏东南站]、中国科学院纳木错圈层相互作用综合观测研究站[纳木错站]、中国科学院珠穆朗玛峰大气与环境综合观测研究站[珠峰站]、阿里荒漠环境综合观测研究站[阿里站]和慕士塔格西风带环境综合观测研究站[慕士塔格站])采样测定了无机氮(NO3--N和NH4+-N)湿沉降。无机氮湿沉降以NH4+为主,NH4+和NO3-主要源自人为活动。藏东南站、纳木错站、珠峰站、阿里站和慕士塔格站的NH4+湿沉降量分别为:0.63、0.91、1.61、0.36和1.25 kg N ha-1 yr-1,NO3-湿沉降量分别为:0.28、0.35、0.04、0.08 和0.3 kg N ha-1 yr-1,总无机氮湿沉降量分别为:0.91、1.26、1.64、0.44和1.55 kg N ha-1 yr-1。 结合本研究氮沉降观测和文献记录的氮沉降数据,进行克里金空间插值,估算了青藏高原NH4+ 湿沉降量为:1.30 kg N ha-1 yr-1,NO3-湿沉降量为:0.56 kg N ha-1 yr-1;因此,青藏高原无机氮湿沉降量为:1.86 kg N ha-1 yr-1,这一数值远低于中国平均无机氮湿沉降量(13.87-21.1 kg N ha-1 yr-1)。青藏高原无机氮湿沉降和NH4+湿沉降空间格局:由东到西,逐渐降低;这与青藏高原降水量空间格局类似。 (2)在当前氮沉降背景下,调查测定了高原腹地三种典型放牧草地(草原、草甸和沼泽草甸)和草原围栏内外植物、土壤养分和碳交换现状。研究发现:高寒草原、草甸和沼泽草甸表层(0-10cm)土壤有机碳分别为:35.1±2.6、29.1±2.5 和93.1±6.4 mg C g-1,土壤全氮分别为:3.4±0.2、2.0±0.1和6.3±0.8 mg N g-1。 这三种草地土壤可利用氮形态与环境干湿程度有关,随着环境湿润程度增加,土壤NH4+富集,而NO3-减少,NH4+/NO3- 持续增加。就生态系统CO2净交换(Net ecosystem exchange,NEE)、生态系统呼吸(Ecosystem respiration,ER)和总生态系统生产力(Gross ecosystem productivity,GEP)而言,均是沼泽草甸较高,而草甸与草原相当。就生长季中GEP 峰值出现时间而言,沼泽草甸最早,而草甸和草原相当。对典型高寒草原进行7 年围封,发现:较之于围栏外,围栏内植物具有较高的地上生物量(围栏内:42.46±2.64 g m-2,围栏外:27.71±3.50 g m-2,)和地下生物量(围栏内:637.22±58.14 g m-2,围栏外:401.11±53.03 g m-2)。较之于围栏内,围栏外土壤NO3--N含量较高(围栏内:6.1±0.5 mg N kg-1,围栏外:12.1±0.8 mg N kg-1),围栏外植物具有较高叶氮含量(围栏内:16.4±1.6 mg g-1,围栏外:18.3±1.6 mg g-1)和叶N:P(围栏内:13.0±0.4,围栏外:15.9±0.4)。 (3)开展了为期4年(2010-2013年)的多水平氮施肥试验(施肥水平:0、10、20、40、80和160 kg N ha-1 yr-1),研究青藏高原典型放牧草原生态系统结构、功能对模拟活性氮沉降增加的响应。就土壤因子对氮施肥的响应而言,施肥并未对土壤有机碳、全氮、C:N 等稳定性指标造成影响。土壤无机氮对氮施肥的响应因施肥年限而异:施肥第一年(2010年),较之于对照,160 kg N ha-1 yr-1施肥水平土壤NO3--N 和NH4+-N 显著增加;施肥第二年(2011年),沿施肥水平增加,土壤NO3--N 线性增加,逐渐积累;至施肥第三年(2012年),随施肥水平增加,土壤NO3--N持续增加,当施肥水平大于40 kg N ha-1 yr-1后渐趋平稳;当施肥率达到80 kg N ha-1 yr-1时,土壤NO3--N 达到23.4±0.9 mg N kg-1,之后不再显著增加(施肥160 kg N ha-1 yr-1时为25.6±0.3 mg N kg-1)。 (4)就生态系统水平植物因子对氮施肥的响应而言,随施肥水平增加,植物物种丰度和地上生物量未呈现显著变化;不过,却导致地下生物量增加,以致植物根冠比随施肥水平增加,而当施肥水平大于40 kg N ha-1 yr-1后根冠比渐趋平稳。氮施肥提升了植物叶氮含量和N:P;从施肥0 kg N ha-1 yr-1至施肥160 kg N ha-1 yr-1,植物N:P从14.4±2.6 增至20.5±0.8。较之于对照,施肥10、20、80 和160 kg N ha-1 yr-1显著促进了生态系统呼吸(ER),施肥10、80、160 kg N ha-1 yr-1促进了生态系统总光合(GEP);仅有施肥10 kg N ha-1 yr-1促进生态系统净CO2 吸收(NEE),其余施肥水平并未导致NEE产生显著性变化。 (5)就物种水平植物因子对氮施肥的响应而言,植物氮吸收对施肥的响应因物种而异(Species-specific)。随施肥水平增加,7 种非豆科植物氮含量显著增加,1种非豆科植物(大花嵩草[Kobresia macrantha])氮含量未现显著变化,豆科植物(冰川棘豆[Oxytropics glacialis])氮含量未现显著变化。所有物种(豆科和非豆科)15N丰度随施肥水平增加而显著增加。随施肥水平增加,所有非豆科植物N:P均显著增加,而豆科植物未现显著变化。随施肥水平增加,非豆科植物N:P、N 利用效率(N-use efficiency,单位施肥量所致植物地上植物碳库增量)和N吸收效率(N-uptake efficiency,单位施肥量所致植物地上氮库增量)显著增加,且当施肥约40 kg N ha-1 yr-1时出现拐点,之后趋向平稳。 总之:青藏高原氮沉降量相对较低,较之于中国平均无机氮沉降量,青藏高原无机氮沉降量要低一个数量级。在当前氮沉降背景下,典型放牧草原非豆科植物仍受氮限制。活性氮沉降增加能进一步缓解高寒草原植物氮限制;根据植物N 含量、N:P、 氮吸收效率、氮利用效率和土壤无机氮对多水平氮施肥的响应,放牧草原氮沉降饱和阈值约为40 kg N ha-1 yr-1。
英文摘要Tibetan Plateau is the youngest and highest plateau on the Earth, where the biogeochemical cycles were disturbed by climate change and human activities in recent decades. From mid-20th century, both nitrogen (N) deposition and grazing pressure have been increasing in alpine grassland ecosystems. Although alpine ecosystem is sensitive to increased N deposition, the impacts of N addition to grazing grasslands remain unclear. The objectives of the study were to: First, investigate the amount of N wet deposition and its spatial distribution pattern on the Tibetan Plateau; Second, examine alpine ecosystem nutrient status and carbon exchange under the background of current N deposition; Third, clarify responses of ecosystem structure, function and CO2 exchange to elevated N input under grazing conditions. (1) In this study, the chemical characteristics of precipitation were investigated at five remote sites from 2011 to 2013 on the Tibetan Plateau: Southeast Tibet Observation and Research Station for the Alpine Environment, Chinese Academy of Sciences (Southeast Tibet Station), Nam Co Monitoring and ipt Research Station for Multisphere Interactions, Chinese Academy of Sciences (Nam Co Station), Qomolangma Atmospheric and Environmental Observation and Research Station, Chinese Academy of Sciences (Qomolangma Station), Ngari Desert Observation and Research Station (Ngari Station) and Muztagh Ata Westerly Observation and Research Station (Muztagh Ata Station). NH4+-N was the dominant form of the inorganic nitrogen wet deposition on the Tibetan Plateau. At Southeast Tibet Station, Nam Co Station, Qomolangma Station, Ngari Station and Muztagh Ata Station, the NH4+-N wet deposition were 0.63, 0.91, 1.61, 0.36 and 1.25 kg N ha-1 yr-1, respectively; the NO3--N wet deposition were 0.28, 0.35, 0.04, 0.08 and 0.3 kg N ha-1 yr-1, respectively; the dissolved inorganic N were 0.91, 1.26, 1.64, 0.44 and 1.55 kg N ha-1 yr-1, respectively. Compared with existing data, kriging spatial interpolation was utilized to assessed quantity and spatial pattern of the N deposition on the Tibetan Plateau. Spatial averaging NH4+-N wet deposition, NO3--N wet deposition and inorganic N wet deposition were estimated as 1.30, 0.56 and 1.86 kg N ha-1 yr-1, respectively. (2) During the growing seasons of 2012 and 2013, CO2 flux and soil investigations were conducted in an alpine steppe, alpine meadow and alpine swamp meadow on the central Tibetan Plateau. Preliminary results showed that: The soil inorganic N pool was dominated by NO3- in the steppe, but by NH4+ in the wetland. In the meadow, the soil inorganic N pool was dominated by both NH4+ and NO3-, with an NH4+/NO3-ratio of about 1:1. Responses of plant nutrient and ecosystem CO2 assimilation to grazing and grazing exclusion were investigated in an alpine steppe. Preliminary results show that: During the growing season of 2012, grazing exclusion increased above-ground biomass from 27.71±3.50 g m-2 to 42.46±2.64 g m-2, and increased below-ground biomass from 401.11±53.03 g m-2 to 637.22±58.14 g m-2. Compared to fencing treatment, grazing increased soil NO3--N from 6.1±0.5 mg N kg-1 to 12.1±0.8 mg N kg-1, but did not change soil NH4+-N (0.75±0.05 mg N kg-1 in fencing area and 0.79±0.03 mg N kg-1 in grazing area). Grazing increased the weighted average foliar N:P ratio from 13.0±0.4 to 15.9±0.4. (3) Four years (2010-2013) of multi-level N fertilization experiment (0, 10, 20, 40, 80 and 160 kg N ha-1 yr-1) was conducted in an alpine steppe on the central Tibetan Plateau, to clarify responses of ecosystem structure, function and CO2 exchange to elevated N input under grazing conditions. From 2010 to 2012, soil organic carbon, soil total N and soil C:N were not changed by N addition. Soil inorganic N responses to N addition were different with fertilization ages. In the first year (2010), the treatment of N fertilization rate at 160 kg N ha-1 yr-1 had higher soil NO3--N and NH4+-N than other treatment. In the second ye
中文关键词氮沉降 ; 氮添加 ; 氮限制 ; 氮饱和 ; 碳通量
英文关键词Nitrogen deposition Nitrogen addition Nitrogen limitation Nitrogen saturation Carbon flux
语种中文
国家中国
来源学科分类自然地理学
来源机构中国科学院青藏高原研究所
资源类型学位论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/287413
推荐引用方式
GB/T 7714
刘永稳. 青藏高原氮湿沉降现状及典型放牧草原对氮施肥的响应[D]. 中国科学院大学,2014.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘永稳]的文章
百度学术
百度学术中相似的文章
[刘永稳]的文章
必应学术
必应学术中相似的文章
[刘永稳]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。