Knowledge Resource Center for Ecological Environment in Arid Area
低低跟踪模式重力卫星反演理论、方法及应用 | |
其他题名 | Theory, Methodology and Application of Recoveryusing Low-low Tracking Gravity Satellite Data |
冉将军 | |
出版年 | 2014 |
学位类型 | 博士 |
导师 | 曾晓东 |
学位授予单位 | 中国科学院大学 |
中文摘要 | 自从上世纪60年代Baker提出利用卫星观测数据解算地球重力场的理论后,重力卫星领域的研究飞速发展。尤其随着现代仪器研制技术水平的提升,国际大地测量界相继成功发射了一系列的重力卫星,如CHAMP (CHAllenging Minisatellite Payload)、GRACE (Gravity Recovery And Climate Experiment)和GOCE (Gravity field and steady-state Ocean Circulation Explorer),给地球重力场研究领域带来革命性的进步。在这三代重力卫星中,GRACE具备了高时间分辨率和高空间分辨率地监测地表质量变化的能力,不仅为大地测量领域带了巨大的生机,同时也为冰川学、水文学、地震学以及地球动力学等相关领域提供了可靠的观测数据支撑。然而,如何从重力卫星观测数据中高精度地提取出地球质量变化的信号,一直以来是空间大地测量领域里的研究热点和难点。本文首先回顾了重力卫星测量的研究现状与背景,然后系统性的给出了地球重力场的基本理论和相关的数据处理方法。在此基础上,选择具有代表性的重力场反演方法: 动力学法和短弧长法对GRACE重力卫星实测数据进行处理与并对下一代重力卫星关键载荷技术指标进行了模拟研究。论文主要包括以下方面的研究:1、ANGELS重力场反演系统研发本文研发了一套名为ANGELS的重力场反演系统 (即基于低轨卫星数据的地球重力场解算系统,ANalyst of Gravity Estimation with Low-orbit Satellites),可以进行高精度的时变和静态地球重力场模型解算,同时,ANGELS系统具有实测数据处理和模拟数据分析两种不同的功能。2、轨道参数和加速度计参数的校正以及利用距离变率数据反演重力场首先,导出了利用精密轨道数据校正轨道参数和加速度计参数的计算公式,且比较了短弧长法和动力学法在校正参数时的差别。其次,把偏差线性变化项作为新的加速度计参数引入到用短弧长法反演地球重力场模型中,且通过算例分析,证明了偏差线性变化项有助于提高地球重力场的反演精度。此外,从时域和频域的角度详细分析了校正前后的距离变率数据存在的差别,并以2009年9月份校正后的距离变率数据为例,成功提取了全球地球重力场时变信号,且与国际同行最新发布的同类模型进行了比较。3、融合精密轨道和距离变率数据的时变信号提取与应用通过合理的定权方式融合了精密轨道和距离变率数据,并利用此两类数据联合反演了IGG-CAS系列时变地球重力场模型。通过与国际三大知名机构:美国德克萨斯大学空间研究中心CSR (Center for Space Research)、德国地学研究中心GFZ(GeoForschungsZentrum)和美国宇航局喷气推进实验室JPL(Jet Propulsion Laboratory)发布的全球时变重力场模型(RL05版)进行了详细的比较,结果表明: 四家GRACE反演陆地水时变信号的空间分布十分接近, 在长江流域反演的陆地水时变信号,两两之间的相关系数均大于0.8。通过反演撒哈拉沙漠干旱地区的时变信号来评估反演的精度水平,IGG-CAS、CSR-RL05、GFZ-RL05和JPL-RL05反演结果的均方差分别为1.5cm、1.1cm、1.1cm和1.2cm等效水柱高。通过进一步比较四家模型的时变信号在2004至2010年间的周年振幅可知:IGG-CAS、CSR-RL05、GFZ-RL05和JPL-RL05结解算出的亚马逊流域陆地水周年振幅分别为14±1cm、16±1cm、15±1cm和16±1cm等效水柱高。结果表明利用ANGELS系统反演的IGG-CAS时变重力场模型的精度接近于目前国外主要机构最新公布的时变重力场模型的精度。4、下一代重力卫星的指标论证和分析利用ANGELS软件系统探讨了适合我国仪器研制水平的低低跟踪模式下的重力卫星指标,以不同星载设备精度指标的组合进行模拟计算,模拟结果显示:(1)把GRACE卫星的星间距离变率指标提高一个量级,其余指标保持与GRACE卫星设计指标一致时,可使地球重力场的精度获得一个数量级的提高;(2)若星间距离变率为1.0×10-8ms-1,轨道高度为300km,加速度计精度为3.0×10-10ms-2,轨道精度为0.03m, 星间距离100km,与利用GRACE的设计指标反演出的重力场精度相比,可提高约二个数量级,并建议我国未来低低跟踪重力卫星计划参考此指标。 |
英文摘要 | Since the theory of gravity field recovery using satellite data was proposed in the 1960, this field has been achieved a big progress. Especially along with the development of instruments, a series of satellite gravity missions has been lunched successfully, for example, CHAMP(CHAllenging Minisatellite Payload)、GRACE(Gravity Recovery And Climate Experiment)、GOCE(Gravity field and steady-state Ocean Circulation Explorer), etc.. For the sake of high spatial and temporal resolution of the monitor of Earth surface mass variations, GRACE has been provide lots of valuable data not only for geodesy but also for glaciology, hydrology, semiology and geo-dynamics. However, the way to extract the signals of Earth mass variations is always inside the research center of geodesy scientists.The research background of satellite gravity is listed firstly, and the basic theory of Earth gravity and the relating data processing methods are described later. Furthermore, two representative gravity recovery methods are used to process both the simulated and real GRACE data. What’s more, the next generation satellite gravity mission’s data are processed as well. The paper mainly focuses on the following contents:1. The development of ANGELS softwareA software named ANGELS (ANalyst of Gravity Estimation with Low-orbit Satellites) is developed here, in order to recovery both temporal and static gravity. This software can process simulated data and real data from GRACE. 2. Calibration of orbit parameters, acceleration parameters as well as gravity field recoveryThe formula of calibrating the orbit and acceleration parameters is derived. The comparisons among the orbits and range rates before and after calibrations are made. Finally, the temporal gravity field was recovered with the calibrated range rate alone.3. The extraction and application of temporal signals with orbits and range rate dataIGG-CAS series temporal gravity models were recovered with combining orbits and range rate data with a suitable weight. Then the comparisons with the RL05 version of temporal gravity models from three famous research institutes, which are well known as satellite gravity research, for instance, CSR (Center for Space Research), GFZ (GeoForschungs Zentrum) and JPL (Jet Propulsion Laboratory) were done. After applying the same de-stripe and Gauss filter to the four series temporal gravity models (IGG-CAS, GFZ, CSR and JPL) from Jan 2004 to Dec 2010, the time signal of continental water recovered from those four models are very similar. Especially, the correlation coefficients of the signal of Yangtze River valley among the four models are higher than 0.8. The square roots of the signals in Sahara desert region from the IGG-CAS, CSR-RL05, GFZ-RL05 and JPL-RL05 are 1.5cm、1.1cm、1.1cm and 1.2cm in terms of equivalent water height, respectively. To sum up, it shows that the IGG-CAS model reaches almost the same accuracy level when compared with the kind of products which are released by other famous institutes in the world (CSR, GFZ and JPL).4. Analyzing payloads for the next satellite gravity missionAfter taking the development status of relative instruments, which are needed to lunch a gravity satellite, into account, lots of computations were done in order to find out a suitable set of payloads for the gravity satellite of China in future. The simulations show: (1) if the precision of range rate measurement improves from 1.0E-6ms-1 to 1.0 E-7ms-1, the accuracy of global gravity field will be 10.6 times better; (2) the accuracy of the global gravity field will be higher than that of GRACE in a factor of about 121. If we use the accuracy indexes as follow: the accuracy of range, range rate, altitude, acceleration orbit position and the distance between the two satellites are 1.0E-7m, 1.0E-8ms-1, 300km, 3.0E-10ms-2, 0.03m, and 100km, respectively. Therefore, we recommend the payloads mentioned above for Chinese future satellite gravity mission. |
中文关键词 | GRACE ; IGG-CAS ; 时变地球重力场模型 ; 下一代重力卫星 ; 动力学法 ; 短弧长法 |
英文关键词 | GRACE IGG-CAS temporal gravity model next generation gravity satellite mission dynamic approach short arc approach |
语种 | 中文 |
国家 | 中国 |
来源学科分类 | 大地测量学与测量工程 |
来源机构 | 中国科学院测量与地球物理研究所 |
资源类型 | 学位论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/287327 |
推荐引用方式 GB/T 7714 | 冉将军. 低低跟踪模式重力卫星反演理论、方法及应用[D]. 中国科学院大学,2014. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[冉将军]的文章 |
百度学术 |
百度学术中相似的文章 |
[冉将军]的文章 |
必应学术 |
必应学术中相似的文章 |
[冉将军]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。