Arid
DOI10.2172/1163655
报告编号LBNL-6810E
来源IDOSTI_ID: 1163655
Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America using the Switch Electric Power Sector Planning Model: California's Carbon Challenge Phase II, Volume II
Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey
英文摘要This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.
出版年2014
报告类型Technical Report
语种英语
国家美国
来源学科分类29 ENERGY PLANNING, POLICY, AND ECONOMY ; 25 ENERGY STORAGE ; 24 POWER TRANSMISSION AND DISTRIBUTION ; 14 SOLAR ENERGY ; 17 WIND ENERGY carbon emissions, 2050 emissions target, energy modeling, SWITCH model, power system, demand profile, electricity generation, electricity transmission, electricity storage
URLhttp://www.osti.gov/scitech/servlets/purl/1163655
资源类型科技报告
条目标识符http://119.78.100.177/qdio/handle/2XILL650/260643
推荐引用方式
GB/T 7714
Nelson, James,Mileva, Ana,Johnston, Josiah,et al. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America using the Switch Electric Power Sector Planning Model: California's Carbon Challenge Phase II, Volume II,2014.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nelson, James]的文章
[Mileva, Ana]的文章
[Johnston, Josiah]的文章
百度学术
百度学术中相似的文章
[Nelson, James]的文章
[Mileva, Ana]的文章
[Johnston, Josiah]的文章
必应学术
必应学术中相似的文章
[Nelson, James]的文章
[Mileva, Ana]的文章
[Johnston, Josiah]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。