Arid
报告编号IPN-PR-42-163
来源IDNTRS_Document_ID: 20060008090
Semi-Supervised Data Summarization: Using Spectral Libraries to Improve Hyperspectral Clustering
Wagstaff, K. L.; Shu, H. P.; Mazzoni, D.; Castano, R.
英文摘要Hyperspectral imagers produce very large images, with each pixel recorded at hundreds or thousands of different wavelengths. The ability to automatically generate summaries of these data sets enables several important applications, such as quickly browsing through a large image repository or determining the best use of a limited bandwidth link (e.g., determining which images are most critical for full transmission). Clustering algorithms can be used to generate these summaries, but traditional clustering methods make decisions based only on the information contained in the data set. In contrast, we present a new method that additionally leverages existing spectral libraries to identify materials that are likely to be present in the image target area. We find that this approach simultaneously reduces runtime and produces summaries that are more relevant to science goals.
英文关键词CLUSTER ANALYSIS BANDWIDTH IMAGERY PIXELS SPECTRA LIBRARIES
出版年2005
报告类型Technical Report
语种英语
国家美国
URLhttp://hdl.handle.net/2060/20060008090
资源类型科技报告
条目标识符http://119.78.100.177/qdio/handle/2XILL650/259324
推荐引用方式
GB/T 7714
Wagstaff, K. L.,Shu, H. P.,Mazzoni, D.,et al. Semi-Supervised Data Summarization: Using Spectral Libraries to Improve Hyperspectral Clustering,2005.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wagstaff, K. L.]的文章
[Shu, H. P.]的文章
[Mazzoni, D.]的文章
百度学术
百度学术中相似的文章
[Wagstaff, K. L.]的文章
[Shu, H. P.]的文章
[Mazzoni, D.]的文章
必应学术
必应学术中相似的文章
[Wagstaff, K. L.]的文章
[Shu, H. P.]的文章
[Mazzoni, D.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。