Arid
来源IDNTRS_Document_ID: 20040095337
Using Trained Pixel Classifiers to Select Images of Interest
Mazzoni, D.; Wagstaff, K.; Castano, R.
英文摘要We present a machine-learning-based approach to ranking images based on learned priorities. Unlike previous methods for image evaluation, which typically assess the value of each image based on the presence of predetermined specific features, this method involves using two levels of machine-learning classifiers: one level is used to classify each pixel as belonging to one of a group of rather generic classes, and another level is used to rank the images based on these pixel classifications, given some example rankings from a scientist as a guide. Initial results indicate that the technique works well, producing new rankings that match the scientist's rankings significantly better than would be expected by chance. The method is demonstrated for a set of images collected by a Mars field-test rover.
英文关键词MACHINE LEARNING IMAGE ANALYSIS PIXELS CLASSIFICATIONS ROVING VEHICLES RANKING PRIORITIES MARS SURFACE CLASSIFIERS MARS ROVING VEHICLES
出版年2004
报告类型Technical Report
语种英语
国家美国
URLhttp://hdl.handle.net/2060/20040095337
资源类型科技报告
条目标识符http://119.78.100.177/qdio/handle/2XILL650/259312
推荐引用方式
GB/T 7714
Mazzoni, D.,Wagstaff, K.,Castano, R.. Using Trained Pixel Classifiers to Select Images of Interest,2004.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mazzoni, D.]的文章
[Wagstaff, K.]的文章
[Castano, R.]的文章
百度学术
百度学术中相似的文章
[Mazzoni, D.]的文章
[Wagstaff, K.]的文章
[Castano, R.]的文章
必应学术
必应学术中相似的文章
[Mazzoni, D.]的文章
[Wagstaff, K.]的文章
[Castano, R.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。