Arid
报告编号NASA-TM-58239, NAS 1.15:58239, S-513
来源IDNTRS_Document_ID: 19820014093
Scaled Runge-Kutta algorithms for treating the problem of dense output
Horn, M. K.
英文摘要A set of scaled Runge-Kutta algorithms for the third- through fifth-orders are developed to determine the solution at any point within the integration step at a relatively small increase in computing time. Each scaled algorithm is designed to be used with an existing Runge-Kutta formula, using the derivative evaluations of the defining algorithm along with an additional derivative evaluation (or two). Third-order, scaled algorithms are embedded within the existing formulas at no additional derivative expense. Such algorithms can easily be adopted to generate interpolating polynomials (or dependent variable stops) efficiently.
英文关键词ALGORITHMS DIFFERENTIAL EQUATIONS RUNGE-KUTTA METHOD COMPUTER PROGRAMS INDEPENDENT VARIABLES INTERPOLATION POLYNOMIALS
出版年1982
报告类型Technical Report
语种英语
国家美国
URLhttp://hdl.handle.net/2060/19820014093
资源类型科技报告
条目标识符http://119.78.100.177/qdio/handle/2XILL650/258912
推荐引用方式
GB/T 7714
Horn, M. K.. Scaled Runge-Kutta algorithms for treating the problem of dense output,1982.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Horn, M. K.]的文章
百度学术
百度学术中相似的文章
[Horn, M. K.]的文章
必应学术
必应学术中相似的文章
[Horn, M. K.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。