Arid
沙漠化现状定量评价遥感信息模型研究
吴见
出版年2012
学位类型博士
导师彭道黎
学位授予单位北京林业大学
中文摘要沙漠化属于全球性环境恶化现象,国家需要及时准确地掌握其动态以便进行科学防治。但遥感技术在沙漠化监测与评价方面存在很多问题,例如评价指标选取不恰当、权重不客观、指标反演精度低等,至今仍缺乏一套被广泛认同的实用的定量评价指标体系。不同的地区和地物类型主导因子或许相同,但各因子对沙漠化的影响程度一定有差异。目前国内还没有以地物类型为基础的沙漠化遥感定量评价研究报道,如何从地物类型的角度对沙漠化进行遥感定量评价?解决这一问题将有助于认识土地退化过程的机制和成因等内容,有利于建立沙漠化评价指标体系。本论文以京津风沙源治理工程区为例,分别探讨了多光谱和高光谱遥感对干旱半干旱区土地沙漠化进行评价的具体方法,得到的主要结果归纳如下: 1.提出将线性光谱混合分解模型、植被指数和专家知识相结合的地物信息分层次提取模型,实现了地物信息高精度分层次提取。 2.筛选出区分树种信息的多光谱遥感指标,并引用改进的SVM算法提取了退耕还林地树种信息。结果表明,该方法平均精度较传统方法提高9.2%,对快速评价工程质量有重要意义。 3.将纹理、空间信息融入到高光谱影像地物信息提取中。通过反射率光谱分析,结合纹理特征对地物信息进行提取,并采用基于空间信息的方法进一步对植被类型进行分类,平均分类精度较最大似然法提高17.8%。分析了高光谱遥感树种分类可行性,选取差异较大的波段及光谱特征参量,引用改进的BP神经网络模型完成林地树种信息提取。 4.建立了基于地物类型的沙漠化评价遥感指标体系,明确了“基准”的确定方法,在分析大量实测数据的基础上提出了一种新的指标权重计算方法。经过验证,本文模型较传统模型的评价精度提高,评价结果更接近土地沙漠化的真实状况。 5.提出了利用高分辨率卫星影像修正线性光谱混合分解模型分解的TM影像的植被分量,建立提取干旱半干旱地区植被覆盖度的模型。结果表明,该模型不仅提供了更纯的植被光谱信息,而且降低了对土壤背景的敏感度,更适合于中等分辨率卫星影像量化干旱半干旱地区植被覆盖度。 6.利用高光谱遥感数据对森林蓄积量进行预测研究,确定了与蓄积量之间相关系数达到极显著水平的19个特征参数;比较了目前流行的多种高光谱植被盖度提取方法,结果表明基于一阶微分的PLSR模型效果最好。 7.提出了通过高光谱影像分解剔除植被光谱干扰,从而更合理地预测土壤含水量的具体方法;分析了最小噪声变换回归模型和主成分回归模型预测土壤含沙量的能力。
中文关键词沙漠化 ; 定量遥感 ; 土地利用 ; 评价模型 ; 京津风沙源区
语种中文
国家中国
URLhttp://kns.cnki.net/kns/detail/detail.aspx?FileName=1012348953.nh&DbName=CDFD2012
来源机构北京林业大学
资源类型学位论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/254316
推荐引用方式
GB/T 7714
吴见. 沙漠化现状定量评价遥感信息模型研究[D]. 北京林业大学,2012.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[吴见]的文章
百度学术
百度学术中相似的文章
[吴见]的文章
必应学术
必应学术中相似的文章
[吴见]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。