Knowledge Resource Center for Ecological Environment in Arid Area
Evaluation of Alternate DNA Structures at c-MYC Fragile Region Associated with t(8;14) Translocation And Role of GNG Motifs During G-quadruplex Formation | |
Das;Kohal | |
出版年 | 2016 |
英文摘要 | Watson-Crick paired B-form DNA is the genetic material in most of the biological systems. Integrity of DNA is of utmost importance for the normal functioning of any organism. Various environmental factors, chemicals and endogenous agents constantly challenge integrity of the genome resulting in mutagenesis. Over the past few decades multiple reports suggest that DNA can adopt alternative conformations other than the right handed double helix. Such structures occur within the context of B-DNA as sequence dependent structural variations and are facilitated by free energy derived from negative supercoiling, which may be generated during physiological processes like transcription, replication, etc. or binding of proteins. Multiple groups have shown that these structures render fragility to the genome owing to single-strandedness (presence of unpaired bases). This conformational polymorphism of the DNA is due to the presence of several repetitive elements across the genome. Some of the common non-B DNA structures include Z-DNA, H-DNA (triplex DNA), cruciform DNA, G-quadruplexes and RNA: DNA hybrid (R-loops). Over the past few decades G-quadruplex structures have gained tremendous importance owing to its role in physiology and pathology. Recently it has been shown that novel sequence motifs, called GNG or bulges can fold into G-quadruplexes, thus increasing the propensity of such structures genome-wide. Neurological diseases, psychiatric diseases and genomic disorders (due to deletions, translocations, duplications and inversions) are some of the consequences of non-B DNA structures in the human genome. Inadvertent genomic rearrangements in human can lead to different diseases including cancer. Immediate consequence of genomic rearrangement includes structural alteration of genome through joining of distant sequences. t(8;14) translocation is the hallmark of Burkitt’s lymphoma, which results in deregulation of c-MYC gene that may contribute to oncogenic transformation. In the present study, we delineate the causes of fragility within the c-MYC gene. In order to do this, breakpoints at the c-MYC locus from Burkitt’s lymphoma patient sequences reported in database were plotted and analysed. Interestingly, unlike many other translocations, breakpoints at c-MYC locus were widespread, except for a cluster of breakpoints downstream to promoter 2 (P2). Previous studies indicate that the translocation breakpoint clusters often correlate with formation of non-B DNA structures. The entire breakpoint cluster downstream of P2 was divided into Region 1, Region 2 and Region 3. Interestingly, in silico analysis of the breakpoint clusters revealed no evidence for predictive classic non-B DNA motifs in Region 2; whereas Region 1 harboured a G-quadruplex motif on the template strand and Region 3 had two short inverted repeats. Intriguingly, as the nontemplate strand of Region 2 was G skewed with a good number of AID binding motifs, we tested the MYC breakpoint Region 2 for its potential to form R-loop due to binding of nascent RNA to template DNA. Our results showed that MYC Region 2 can form RNA-DNA hybrid in a transcription dependent manner in physiological orientation. Observed structure was sensitive to RNase H. We showed Region 2 hindered action of Dpn I upon transcription confirming formation of R-loop structure. Owing to single strandedness, Region 2 R-loop was shown to be sensitive to P1 nuclease as opposed to the untranscribed control. The single strandedness of the Region 2 R-loop was characterized at a single molecule level through bisulfite modification assay. The assay corroborated formation of R-loop along with providing snapshots of various length R-loops formed upon Region 2 transcription. Besides, various biophysical and biochemical assays showed the complementary region (template strand) to be single-stranded in stretches, upon transcription. Length of RNA within the R-loop was within a range of 75 to 250 nt. To delineate the mechan |
英文关键词 | Non B-DNA Structures Genetic Recombination DNA Replication C-MYC Locus G-Quadruplexes Guanine Nucleotide-Binding Proteins Gluconeogenesis (GNG) Burkitt’s Lymphoma Genetic Deregulation GNG Motifs Cellular Myelocytomatosis Gene Biochemistry |
语种 | 英语 |
URL | http://etd.iisc.ernet.in/handle/2005/2715 |
资源类型 | 学位论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/250250 |
推荐引用方式 GB/T 7714 | Das;Kohal. Evaluation of Alternate DNA Structures at c-MYC Fragile Region Associated with t(8;14) Translocation And Role of GNG Motifs During G-quadruplex Formation[D],2016. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Das;Kohal]的文章 |
百度学术 |
百度学术中相似的文章 |
[Das;Kohal]的文章 |
必应学术 |
必应学术中相似的文章 |
[Das;Kohal]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。