Arid
The overall oxygen transfer coefficient and interfacial area in hydrocarbon-based bioprocesses
Hollis;Peter Graham
出版年2015
学位授予单位Stellenbosch : Stellenbosch University
英文摘要Thesis (MEng)--Stellenbosch University, 2015. ENGLISH ABSTRACT: Bioconversion of hydrocarbons to value-added intermediates and products has significant industrial potential using both prokaryotic and eukaryotic organisms. In particular, alkanes can be converted to an expansive range of commercially important products using aerobic bioprocesses under mild process conditions. Coupled with the relative abundance of alkanes derived from gas to liquid (GTL) technologies, such as those employed by SASOL, South Africa, the commercial potential for bioconverison of alkanes is large. However, unlike carbohydrate substrates, alkane feedstocks are devoid of oxygen in their molecular structure. This means that the entire oxygen demand needs to be met by oxygen transfer. Furthermore, a decline in oxygen transfer in aqueous-hydrocarbon dispersions with increasing alkane concentration has been observed to result from depression of the overall volumetric oxygen transfer coefficient (KLa). Therefore, understanding KLa and the fundamental parameters underpinning its behaviour is critical to ensuring the bioprocess is kinetically, rather than transport, limited in terms of both operation and scale-up. Previous studies have examined KLa in aerated-alkane-aqueous systems. In light of the importance of oxygen transfer in bioprocesses, this study expands on the KLa understanding in 3-phase studies by including a fourth solid phase, thus more closely representing a hydrocarbonbased bioprocess. The project aimed to determine the impact of agitation, alkane concentration and solid loading on the Sauter mean bubble diameter (DSM), gas hold-up and specific interfacial area (a) and correlate these parameters to KLa. This ultimately determined which parameter was dominant over a range of process conditions. Furthermore, concurrent measurement of the KLa and interfacial area meant the behaviour of the liquid side oxygen transfer coefficient (KL) could be defined, providing further insight into how changes in the process conditions impact on KLa. Experiments were conducted in a 5 litre stirred tank bioreactor containing n-C14-20 straight chain alkane, sparged with air at 0.8 vvm. In line with process conditions typical of a hydrocarbonbased bioprocess, KLa and a were measured for agitation rates from 450 to 1000 RPM, alkane concentrations from 2 to 20% v/v and yeast solids from 1 to 10 g/l. KLa was measured using the gassing out procedure using a dissolved oxygen (DO) probe which measured the response of the system to a step change in the sparge gas oxygen pressure. The probe response lag ( P), equal to the time taken for the probe to reach 63.2% of the saturation DO concentration, was determined for every set of process conditions. The inverse of P, KP was taken into account when calculating KLa from the DO probe response. The area was calculated from DSM and gas hold-up. DSM was quantified using high speed photography and image analysis was performed in Matlab® using bespoke routines. Elimination of optical distortion and the development of an adequate light source was key to acquiring clear images. Both KLa and interfacial area were found to be affected by changes in agitation, alkane concentration and yeast loading. An increase in agitation increased the KLa over the entire range of alkane concentration and yeast loading. Similarly, an increase in agitation resulted in an increase in interfacial area, underpinned by a decrease in the DSM. It is therefore likely that the interfacial area plays a dominant role in defining KLa when considering an increase in agitation. Increases in alkane concentration resulted in a peak in KLa between 2.5 and 5% alkane concentration while further increases in alkane concentration depressed KLa. This peak was not observed in interfacial area, where an increase in alkane concentration resulted only in a decrease in interfacial area, thus indicating a positive influence of KL on KLa at low alkane concentrations. Further i
英文关键词Hydrocarbon-based bioprocesses Oxygen transfer coefficient UCTD
语种英语
URLhttp://hdl.handle.net/10019.1/96868
来源机构Stellenbosch University
资源类型学位论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/249162
推荐引用方式
GB/T 7714
Hollis;Peter Graham. The overall oxygen transfer coefficient and interfacial area in hydrocarbon-based bioprocesses[D]. Stellenbosch : Stellenbosch University,2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hollis;Peter Graham]的文章
百度学术
百度学术中相似的文章
[Hollis;Peter Graham]的文章
必应学术
必应学术中相似的文章
[Hollis;Peter Graham]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。