Knowledge Resource Center for Ecological Environment in Arid Area
Seismic Microzonation Of Lucknow Based On Region Specific GMPE's And Geotechnical Field Studies | |
Abhishek Kumar;* | |
出版年 | 2012 |
英文摘要 | Mankind is facing the problem due to earthquake hazard since prehistoric times. Many of the developed and developing countries are under constant threats from earthquakes hazards. Theories of plate tectonics and engineering seismology have helped to understand earthquakes and also to predicate earthquake hazards on a regional scale. However, the regional scale hazard mapping in terms of seismic zonation has been not fully implemented in many of the developing countries like India. Agglomerations of large population in the Indian cities and poor constructions have raised the risk due to various possible seismic hazards. First and foremost step towards hazard reduction is estimation of the seismic hazards in regional scale. Objective of this study is to estimate the seismic hazard parameters for Lucknow, a part of Indo-Gangetic Basin (IGB) and develop regional scale microzonation map. Lucknow is a highly populated city which is located close to the active seismic belt of Himalaya. This belt came into existence during the Cenozoic era (40-50 million years ago) and is a constant source of seismic threats. Many of the devastating earthquakes which have happened since prehistoric times such as 1255 Nepal, 1555 Srinagar, 1737 Kolkata, 1803 Nepal, 1833 Kathmandu, 1897 Shillong, 1905 Kangra, 1934 Bihar-Nepal, 1950 Assam and 2005 Kashmir. Historic evidences show that many of these earthquakes had caused fatalities even up to 0.1 million. At present, in the light of building up strains and non-occurrence of a great event in between 1905 Kangra earthquake and 1934 Bihar-Nepal earthquake regions the stretch has been highlighted as central seismic gap. This location may have high potential of great earthquakes in the near future. Geodetic studies in these locations indicate a possible slip of 9.5 m which may cause an event of magnitude 8.7 on Richter scale in the central seismic gap. Lucknow, the capital of Uttar Pradesh has a population of 2.8 million as per Census 2011. It lies in ZONE III as per IS1893: 2002 and can be called as moderate seismic region. However, the city falls within 350 km radial distance from Main Boundary Thrust (MBT) and active regional seismic source of the Lucknow-Faizabad fault. Considering the ongoing seismicity of Himalayan region and the Lucknow-Faizabad fault, this city is under high seismic threat. Hence a comprehensive study of understanding the earthquake hazards on a regional scale for the Lucknow is needed. In this work the seismic microzonation of Lucknow has been attempted. The whole thesis is divided into 11 chapters. A detailed discussion on the importance of this study, seismicity of Lucknow, and methodology adopted for detailed seismic hazard assessment and microzonation are presented in first three chapters. Development of region specific Ground Motion Prediction Equation (GMPE) and seismic hazard estimation at bedrock level using highly ranked GMPEs are presented in Chapters 4 and 5 respectively. Subsurface lithology, measurement of dynamic soil properties and correlations are essential to assess region specific site effects and liquefaction potential. Discussion on the experimental studies, subsurface profiling using geotechnical and geophysical tests results and correlation between shear wave velocity (SWV) and standard penetration test (SPT) N values are presented in Chapter 6. Detailed shear wave velocity profiling with seismic site classification and ground response parameters considering multiple ground motion data are discussed in Chapters 7 and 8. Chapters 9 and 10 present the assessment of liquefaction potential and determination of hazard index with microzonation maps respectively. Conclusions derived from each chapter are presented in Chapter 11. A brief summary of the work is presented below: Attenuation relations or GMPEs are important component of any seismic hazard analysis which controls accurate prediction of the hazard values. Even though the Himalayas have experienced great eart |
英文关键词 | Seismology - India - Lucknow Seismic Microzonation Seismic Hazard Analysis Seismic Microzonation - Lucknow Liquefaction - Lucknow Ground Motion Production Equation (GMPE) Seismic Site Classification Earthquake Hazard Index Liquefaction Hazard Mapping Microzonation Maps Seismic Hazard Maps Shear Wave Velocity (SWV) Standard Penetration Test (SPT) Meteorology |
语种 | 英语 |
URL | http://etd.iisc.ernet.in/handle/2005/2559 |
资源类型 | 学位论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/246540 |
推荐引用方式 GB/T 7714 | Abhishek Kumar;*. Seismic Microzonation Of Lucknow Based On Region Specific GMPE's And Geotechnical Field Studies[D],2012. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Abhishek Kumar;*]的文章 |
百度学术 |
百度学术中相似的文章 |
[Abhishek Kumar;*]的文章 |
必应学术 |
必应学术中相似的文章 |
[Abhishek Kumar;*]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。