Arid
Modelling location-dependent environmental impacts in life cycle assessment: water use, desertification and soil erosion. Application to energy crops grown in Spain
Núñez Pineda;Montse
出版年2011
学位授予单位Universitat Autònoma de Barcelona
英文摘要Soil and freshwater are two absolutely essential resources for ecosystems and humanity. Agriculture depends very much on these resources, and so, without their correct management, farmland practices can trigger many adverse impacts on the environment and jeopardise the availability of soil and water for future agricultural activities. Agricultural lands represent only 12% of the world’s land area. However, roughly 70% of water withdrawals from nature are for irrigated agriculture and 30-40% of the agricultural land is affected by soil degradation. Desertification, irreversible soil degradation, is one of the main problems for sustainability in drylands, areas that cover 40% of the earth’s surface. For these reasons, the environmental impacts of the use of water and land by agricultural activities should be measured. Life cycle assessment (LCA) is a method to construct the environmental profile of production systems. It was initially developed for industrial production, but a considerable amount of research has been undertaken in recent years to adapt LCA to agricultural systems as well. Conventional LCA methodology does not determine the environmental impacts of water and land use, which is a very significant shortcoming when evaluating the environmental performance of agricultural systems. Furthermore, contrary to other global environmental impact categories such as global warming, the environmental impacts of water and land use vary in every location of the globe, depending on the spatio-temporal conditions of the location, requiring therefore an extension of current LCA methodology. This thesis focuses on the development of the LCA methodology to incorporate the environmental impacts arising from the use of water and land. The spatio-temporal variability of these resources is taken into account in the proposed methods using the complementary tool of geographic information systems (GIS). For water use, two screening frameworks are built to capture the impacts of soil-water consumption by plants, when, until now, efforts have been directed towards evaluating the environmental impacts of irrigation water consumption. For land use, a multi-indicator approach for a new impact category, desertification, until now never modelled in the LCA context, is provided, as well as a methodology for including soil erosion impacts, in which the soil loss has been related to the loss of organic carbon, as a measure of the soil quality, and finally, to the loss of biomass productivity of ecosystems. The methods developed deal with the life cycle inventory (LCI) and the life cycle impact assessment (LCIA) phases. In addition, to verify the applicability of the developed location-dependent methods and characterisation factors, these are applied to agricultural crop rotations with energy crops growing in Spain, with the aim of quantifying the side effects of producing bioenergy on the disputed water and land resources in the country. The outcomes indicate that there is no best solution of a single crop rotation grown in a specific location capable of minimising water and land use environmental impacts simultaneously. This is because, firstly, rainfed crop rotations exhibit higher land use related impacts but, in contrast, they are not irrigated. And secondly, locations with more surface, ground and soil water reserves are subjected to more intensive and erosive rainfalls, thus, to higher land use damages. Among other important follow-up lines of research, future work should focus on the study of suitable functional units for agricultural LCA, calculate the uncertainties of the developed methods as well as try to identify a feasible and relevant geographical scale at which to address the spatial differentiation of the characterisation factors for water and land use impacts, and in general, for any location-dependent impact category. Suelo y agua dulce son dos recursos imprescindibles para los ecosistemas y la humanidad. La agricultura depende
英文关键词Ciències Experimentals 504 - Ciències del medi ambient
语种其他
URLhttp://hdl.handle.net/10803/79135
来源机构Universitat Autònoma de Barcelona
资源类型学位论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/245767
推荐引用方式
GB/T 7714
Núñez Pineda;Montse. Modelling location-dependent environmental impacts in life cycle assessment: water use, desertification and soil erosion. Application to energy crops grown in Spain[D]. Universitat Autònoma de Barcelona,2011.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Núñez Pineda;Montse]的文章
百度学术
百度学术中相似的文章
[Núñez Pineda;Montse]的文章
必应学术
必应学术中相似的文章
[Núñez Pineda;Montse]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。