Arid
Mass transfer area of structured packing
Tsai;Robert Edison
出版年2010
英文摘要The mass transfer area of nine structured packings was measured as a function of liquid load, surface tension, liquid viscosity, and gas rate in a 0.427 m (16.8 in) ID column via absorption of CO₂ from air into 0.1 mol/L NaOH. Surface tension was decreased from 72 to 30 mN/m via the addition of a surfactant (TERGITOL[trademark] NP-7). Viscosity was varied from 1 to 15 mPa·s using poly(ethylene oxide) (POLYOX[trademark] WSR N750). A wetted-wall column was used to verify the kinetics of these systems. Literature model predictions matched the wetted-wall column data within 10%. These models were applied in the interpretation of the packing results. The packing mass transfer area was most strongly dictated by geometric area (125 to 500 m²/m³) and liquid load (2.5 to 75 m³/m²·h or 1 to 30 gpm/ft²). A reduction in surface tension enhanced the effective area. The difference was more pronounced for the finer (higher surface area) packings (15 to 20%) than for the coarser ones (10%). Gas velocity (0.6 to 2.3 m/s), liquid viscosity, and channel configuration (45° vs. 60° or smoothed element interfaces) had no appreciable impact on the area. Surface texture (embossing) increased the area by 10% at most. The ratio of effective area to specific area (a[subscript e]/a[subscript p]) was correlated within limits of ±13% for the experimental database: [mathematical formula]. This area model is believed to offer better predictive accuracy than the alternatives in the literature, particularly under aqueous conditions. Supplementary hydraulic measurements were obtained. The channel configuration significantly impacted the pressure drop. For a 45°-to-60° inclination change, pressure drop decreased by more than a factor of two and capacity expanded by 20%. Upwards of a two-fold increase in hold-up was observed from 1 to 15 mPa·s. Liquid load strongly affected both pressure drop and hold-up, increasing them by several-fold over the operational range. An economic analysis of an absorber in a CO₂ capture process was performed. Mellapak[trademark] 250X yielded the most favorable economics of the investigated packings. The minimum cost for a 7 m MEA system was around $5-7/tonne CO₂ removed for capacities in the 100 to 800 MW range. text
英文关键词CO2 capture Absorption Mass transfer Structured packing Effective area Viscosity Surface tension
语种英语
URLhttp://hdl.handle.net/2152/ETD-UT-2010-05-1412
资源类型学位论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/244891
推荐引用方式
GB/T 7714
Tsai;Robert Edison. Mass transfer area of structured packing[D],2010.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tsai;Robert Edison]的文章
百度学术
百度学术中相似的文章
[Tsai;Robert Edison]的文章
必应学术
必应学术中相似的文章
[Tsai;Robert Edison]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。