Arid
Noise Resilient Image Segmentation and Classification Methods with Applications in Biomedical and Semiconductor Images
[null]
出版年2010
学位授予单位Arizona State University
英文摘要abstract: Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical, and industrial images. A robust level-set-based multi-region and texture image segmentation approach is proposed in this thesis to tackle most of the challenges in the existing multi-region segmentation methods, including computational complexity and sensitivity to initialization. Medical image analysis helps in understanding biological processes and disease pathologies. In this thesis, two cell evolution analysis schemes are proposed for cell cluster extraction in order to analyze cell migration, cell proliferation, and cell dispersion in different cancer cell images. The proposed schemes accurately segment both the cell cluster area and the individual cells inside and outside the cell cluster area. The method is currently used by different cell biology labs to study the behavior of cancer cells, which helps in drug discovery. Defects can cause failure to motherboards, processors, and semiconductor units. An automatic defect detection and classification methodology is very desirable in many industrial applications. This helps in producing consistent results, facilitating the processing, speeding up the processing time, and reducing the cost. In this thesis, three defect detection and classification schemes are proposed to automatically detect and classify different defects related to semiconductor unit images. The first proposed defect detection scheme is used to detect and classify the solder balls in the processor sockets as either defective (Non-Wet) or non-defective. The method produces a 96% classification rate and saves 89% of the time used by the operator. The second proposed defect detection scheme is used for detecting and measuring voids inside solder balls of different boards and products. The third proposed defect detection scheme is used to detect different defects in the die area of semiconductor unit images such as cracks, scratches, foreign materials, fingerprints, and stains. The three proposed defect detection schemes give high accuracy and are inexpensive to implement compared to the existing high cost state-of-the-art machines. Dissertation/Thesis Ph.D. Electrical Engineering 2010
英文关键词Engineering Electronics and Electrical Cell migration Defects detection and classification Level set Segmentation Multi-region segmentation Non-wet solder joint Voids detection
语种英语
URLhttp://hdl.handle.net/2286/R.I.8607
来源机构Arizona State University
资源类型学位论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/244856
推荐引用方式
GB/T 7714
[null]. Noise Resilient Image Segmentation and Classification Methods with Applications in Biomedical and Semiconductor Images[D]. Arizona State University,2010.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[[null]]的文章
百度学术
百度学术中相似的文章
[[null]]的文章
必应学术
必应学术中相似的文章
[[null]]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。